会述职范文 >教案大全

小学数学圆的周长教案6篇

针对不同的课题,要学会分析其中的重难点,同时写好相关的教案,教案对于老师来说是一项非常常见的材料,因此需要认真对待,会述职范文小编今天就为您带来了小学数学圆的周长教案6篇,相信一定会对你有所帮助。

小学数学圆的周长教案6篇

小学数学圆的周长教案篇1

教学目标

1、使学生认识圆的周长,初步理解圆周率的意义。

2、通过对圆周率值的`探求,培养学生科学的和实事求是的探索精神,及概括能力和逻辑思维能力。

3、通过介绍我国古代数学家对圆周率研究的贡献,对学生进行爱国主义和辩证唯物主义观点的启蒙教育、增强民族自豪感。

教学重点和难点

推导圆周长的计算公式。理解圆周率的意义。

教学过程设计

(一)复习准备

上节课我们认识了圆,现在大家都说说,你们都知道关于圆的哪些知识?

(二)学习新课

我们这节课就来研究圆的周长。(板书:圆的周长)

我想问问同学,你们都带了哪些圆形实物?

两人互相指指圆的周长在哪儿?

谁愿意到前面来指一指老师手里这个圆的周长。

谁跟他指得不一佯?为什么这样指不行?

老师这有一面镜子,我要给这面镜子镶一条不锈钢边框,怎么才能知道这个边框长多少厘米呢?

老师这还有一个杯子,用它喝水有时烫手,我想编一个杯子套,怎么才能知道套口应该编多大?

哪个小组愿意帮助解决这个问题?我们每个组都带了一些圆形实物,我们要通过小组合作测出圆的周长,并填写实验报告。

请你在实验报告上填出你测量的实物名称,周长是多少,直径是多少。

(学生分小组测量手中圆形实物,并填写在实验报告上。能测量多少数据就测量多少数据。)

请小组代表汇报本组的实验过程和实验结果。

同学们想了那么多种方法,看来你们真了不起。我们归纳起来,同学们都是用缠绕、滚动的方法把曲线变直的。(板书:绕、滚)

(师出示黑板上画的圆)谁能用这两种方法来测量这个圆的周长。

看来光靠绕、滚这种实践的方法来测量圆的周长是不行的,我们必须研究一种求圆周长的方法。

想一想,以前我们学过哪些几何图形的周长?

长方形的周长和谁有关系?有什么关系?

正方形的周长和谁有关系?有什么关系?

圆的周长和谁有关系呢?举个例子说明,是不是这样呢?请看屏幕。

(用电脑演示三个滚动的圆,看出圆越大滚动的轨迹越长,圆越小滚动的轨迹越短。)

我们得出了圆的周长和直径有关系。

(板书:圆的周长直径)

这是我们大家一起发现的。科学家往往发现问题就要去研究,我们同学长大想不想当科学家?今天我们就先学着科学家来研究一个问题:用我们测量的数据,通过计算分析,来研究圆的周长到底和直径有什么关系?你发现了什么规律?

(学生分小组讨论。)

通过同学们实验研究,我们得出圆的周长总是直径的3倍多一些。(板书:3倍多一些)

是不是这样呢?我们来验证一下。

(电脑演示:圆的周长是直径的3倍多一些。)

这是一个固定的倍数关系,我们叫它圆周率。(板书:圆周率)

谁能说说圆周率是怎么得来的?

请同学们看书上是怎么说的?

早在2000年前,我国古代数学经典《周髀算经》就指出:圆经一而周三,(用投影打出这句话。)当时,是很了不起的成就,至今人们常用它来估算圆的周长。刚才,老师就是用这种方法来估算同学们算得是否准确的。谁知道世界上最早将圆周率准确到7位小数的是谁?(学生口答)他是我国伟大的数学家和天文学家祖冲之。

(出现祖冲之的画像,同时放配乐录音,介绍祖冲之。)

约1500年前,我国伟大的数学家和天文学家祖冲之就已精密地计算出圆周率的值在3.1415926和3.1415927之间,他是世界上第一个把圆周率的值精确到7位小数的人,比欧洲的数学家要早1000年左右。现在世界上最大的环形山,就是以祖冲之的名字命名的。

我们确实应该为前人的聪明、智慧感到自豪和骄傲。后来瑞士的数学家欧拉用希腊字母代表圆周率。(板书:)

圆周率是一个无限不循环小数。在计算时,如果用这个无限不循环小数参加计算是不方便的,故通常将取两位小数。(板书:3.14)

既然是个固定的值了,只要知道什么就能求圆的周长?(直径。)

现在我们能不能计算黑板上这个圆的周长?

什么条件不知道?(直径。)

谁来测直径,用分米作单位。(板书:分米)

如果直径是2分米,半径就是几分米?

用半径能不能求圆周长?

现在我们试着用直径或半径来求黑板上圆的周长。

谁用直径求出圆的周长?

(板书:3.142=6.28(分米))

为什么这样列式?

(板书:圆的周长=直径圆周率)

如果用c表示圆的周长,d表示直径,表示圆周率,字母公式怎么表示?

(板书:c=d)

谁能用半径求圆的周长?为什么这样做?

如果用字母r表示半径,字母公式怎么表示?

(板书:c=2r)

(三)巩固反馈

1.求出下面各圆的周长。(单位:厘米)

2.判断,你认为正确画,错误画。

(1)一个圆的周长总是它的直径的倍。()

(2)圆的周长是6.28厘米,它的半径是2厘米。()

(3)圆周长的一半与半个圆的周长相等。()

3.选择:你认为哪个答案正确就举几号卡片。

(1)车轮滚动一周,所行路程是求车轮的[]

①半径

②直径

③周长

(2)圆形水池的直径是4米,绕池一周长[]

①25.12米

②12.56米

③12.56平方米

(3)a圆的直径是6厘米,b圆的直径是2分米,圆周率[]

①a圆大

②b圆大

③一样大

4.甲乙两人分别沿①、②两条路线从一端走到另一端,谁走的路线长?

(四)总结全课

这节课你学会了什么?(引导学生总结本课所学的知识。)

课堂教学设计说明

本节课通过引导学生对圆周率的探求,推导出圆周长的计算公式。

第一步先通过测量实物中圆的周长,研究测量圆周长的方法是通过绕、滚的方法来测量。接着出现画在小黑板上的圆,当学生发现测这个圆的周长不能用绕、滚的方法来测量,必须研究一种求圆周长的方法。

第二步,推导计算圆周长的公式。先带领学生回忆:我们以前学过哪些几何图形周长的计算?长方形和正方形的周长和谁有关系?引导学生发现圆周长和谁有关系。

第三步,研究圆的周长和直径有什么关系,理解圆周率的意义,推导出圆周长的计算公式。

小学数学圆的周长教案篇2

【教学内容】

义务教育课程标准北师大版试验教材六年级上册第一单元第1112页圆的周长。

【教学目标】

1、认识圆的周长,能用滚动、线绕等方法测量圆的周长。

2、在测量活动中探索发现圆的周长与直径的关系,理解圆周率的意义用圆周长的计算方法。

3、能正确地计算圆的周长,能运用圆的周长解决一些简单的实际问题。

【教学重、难点】

1、探索发现圆的周长与直径的关系;

2、运用圆周长的知识解决一些简单的实际问题。

【教具、学具准备】

1、每小组一根小绳、一个米尺、三个大小不同的圆片、计算器。

2、课件1:阿凡提与国王比赛a、b

课件2:圆的周长与直径的商的关系

课件3:祖冲之有关资料

【教学设计】

【教学过程 】

一、创设情境

师:同学们喜欢童话故事吗?今天,老师带来了一个阿凡提的故事。国王多次受到阿凡提的捉弄,非常恼火。有一天,他又想出了一个新招,想为难阿凡提。国王从全国精选出了一头身强力壮的小花驴要和阿凡提的小黑驴赛跑,并且规定小花驴沿着圆形路线跑,小黑驴沿着正方形路线跑。(课件出示小花驴和小黑驴赛跑)50米。

师:同学们看,比赛开始了紧张的比赛结束了。今天的比赛谁获胜了?

生:国王的小花驴获得了胜利

师:可是,对于这场比赛小黑驴觉得很委屈,阿凡提也大喊比赛不公平。同学们你们觉得这样的比赛公平吗?

师:说说你是怎么想的?

生:他们的小毛驴跑的路程不是一样长。

师:那到底他们的路程是不是一样长呢?你们有什么好办法来判断一下呢?

生:量一量就知道了,

师:谁能说说正方形的周长和什么有关系,有怎样的关系?

生:正方形的周长和边长有关系,周长是边长的4倍,

师:也就是说只要测出正方形的一条边长就可以 知道正方形的周长,是吗?那小花驴围着圆形路线跑一圈的长度又是圆的什么呢 ?

师:有的同学反映可真快,对!这就是圆的周长,这也是我们这节课要研究的内容。(板书课题)谁能说一说什么叫圆的周长?同桌可以交流一下。

得出:围成圆的曲线的长叫圆的周长。

二 自主合作,探究新知

(1)发现测量圆的周长的不同方法

师:下面请同学们把准备的圆拿出来,那圆的周长指的是哪一部分的长,同桌互相比画一下。

师:好,想一想圆的周长怎样测量?(给学生独立思考的时间)

师:把你的好方法在小组内交流一下。

(上台交流测量的方法)

生:我们的方法是用线绕圆一周,然后量出线的长度就是圆的周长,

生:我们小组觉得直接用米尺绕圆一周就可以读出圆的周长。

生:我们把圆沿着尺子滚动一周,这一周的距离就是圆的周长,

生:我们小组还有不同的方法,我们是用线量出圆周长的一半在乘以2,就可以求出圆的周长。

师板:线绕、滚动、拉直 化曲为直

(2)探究发现圆周率和圆的计算公式

师:我们同学真是太棒了,在这么短的时间内找到这么多的好方法。那我们能不能用这些方法测量出圆形跑道的周长是多少?

生:不行,圆太大了,测量不出来!

师:哦,太大了不容易测量。那大家看,老师画一个小圆,你能不能帮老师测量出来它的周长?

生:有些圆的周长没办法用绕线和滚动的方法测量出来

师: 那咱们能找到一种更简便、更科学的办法来解决这个问题吗?

师:我们知道正方形的周长和边长有关系,周长是边长的4倍,那么圆的周长和什么有关系呢?

生:圆的周长和圆的直径有关系,直径越长圆越大,所以周长也就越大,

师:有道理!那大家来猜一猜,周长和直径有怎样的关系?

生:周长是直径的2倍。

生:他们一样长。

生:我觉得这个圆的周长是直径的3倍,(4倍)(3.5倍)

师:大家猜得可真起劲呀!那到底圆的周长和直径有什么关系呢?怎么才能知道?

生:动手量一量,算一算,

师:说的真好,这可是解决问题的好办法动手做来验证一下。同学们想试试吗?每组拿出大小不同的三个圆,你们可以用自己喜欢的方法去测量。听好要求:

1、小组同学作好分工,选好测量员、记录员、汇报员。

2、记录员要及时地把测量员测量的数据记录在书上的表格里。

3、可以用科学计算器帮忙算一算周长和直径的商。

师:好,现在我们来交流一下你们的实验结果。

生:实物展台交流。

师:大家仔细观察分析,看能发现什么?

(厘米) 圆的直径

(厘米) 周长与直径的商

(保留两位小数)

生:我发现了这三个圆的大小虽然不一样,但圆的周长和直径的商都是三点几。

生:所有圆的周长都是直径的3倍多一些,

师:看来大家的发现都一样,那我们再来看看电脑小博士是不是也发现了这样的规律?(课件直观展示三倍多一点)

生:圆不论大小,它的周长都是直径的三倍多一些。

师:说得真好。圆不论大小,它的周长都是直径的三倍多一些。这是个固定不变的数,!你们的这个发现和许多大数学家的发现不谋而合,

师:人们通常把圆的周长和直径的这个比值叫做圆周率,用字母表示。(板书:圆的周长直径=圆周率)

师:关于圆周率,大家都知道什么?你说,

生:我知道我国古代有个数学家较祖冲之好象和圆周率有关系,

师:老师也收集了一些有关的资料,大家想看吗?

看屏幕,这就是祖冲之,(课件介绍祖冲之 )

师:我们通过圆的周长除以直径得到了也就是圆周率(板书:cd=)你能通过圆的直径求它的周长吗?用字母表示出来。通过半径能求圆的周长吗?

生回答、师板书:cd= c= c=d

d=2r c=2 c2=r

小学数学圆的周长教案篇3

【教学目标】:

1、知道什么是圆的周长。通过绕一绕、滚一滚等活动找出圆的周长与直径的关系,理解圆周率的意义,合作推导出圆的周长计算公式。

2、能运用圆的周长的计算公式解决一些简单的数学问题。

3、初步体会转换思想,学到一些解决实际问题的数学方法。

【教学重点】: 通过自己动手找出圆的周长和直径之间的关系;探究圆的周长的计算公式,准确计算圆的周长。

【教学难点】:理解圆周率的意义

【教学难点】:教师:课件(u盘)、表格、卷尺。

学生:线或卷尺、计算器。

【教学过程】:

(1)教学准备:

1、根据“8里面有几个2,8就是2的几倍。8里面有4个2,

8就是2的4倍,要求8是2的几倍,用8÷2。”填空。

6是3的( )倍。 20是5的( )倍。

22是7的( )倍。

2、把倍数关系句改写成等式。

①6是3的2倍 ( )

②20是5的4倍。 ( )

③22是7的22/7 倍。( )

④c是d的a倍。( )

3、 数学是一门关系学

正方形的周长与边长的关系

c=4a

正方形的周长 是 边长的4倍

(2)新授过程。

自学课本第62页,思考

1、什么是圆的周长?

答:围成圆的曲线的长是圆的周长。

2、直观认识圆的周长。演示动画。

3、你认为 圆的周长与正方形的周长最大的不同在哪里?

4、课本里介绍了几种度量圆的周长的方法?

围绳法 滚动法

5、动画演示滚动法

6、哪个圆大?哪个圆的周长大?圆的大小由什么决定圆周长的大小与什么有关系?

7、猜想、判断。周长与直径比哪个长?周长是直径几倍?

8、动手操作验证猜想

其实,很早就有人研究了周长与直径的关系,发现任意一个圆的周长与它的直径的比值是一个固定的数。我们把它叫做圆周率,用字母π 表示。

π是一个无限不循环小数。

π=3.141592653……

在实际应用中常常只取它保留两位小数的近似值,π≈3.14。

9、投影展示π的前900位,体会π的小数数位的庞大。

10、圆周率前6位谐音记忆

π=3.14159…… 山 巅一寺一壶酒 巅 diān

11、得出结论:圆的周长是它的直径的π倍。写成等式是:c=πd

c=2πr。

12、对比 : c=4 a c=πd

(三)知识应用。求下面圆的周长

(四)课堂作业。《课本》p65 练习十四 1题、2题

小学数学圆的周长教案篇4

教学内容:

教学目标:

1、经历探究圆的周长与直径的商为定值的过程,理解圆周率。体会化曲为直的转化思想,增强合作意识,体验成就感。

2、掌握圆的周长的计算方法,能正确计算圆的周长,并解决简单的实际问题,增强应用意识。

3、感受圆周率的探索历史,增强爱国主义情感和探究数学的欲望。

教学重点:理解圆周率,能计算圆的周长。

教学难点:探索并理解圆的周长与直径的商为定值。

教学准备:大小不同的圆形纸板、计算器、多媒体课件、20厘米长的绳子、直尺、硬币、画有圆而且标出直径的正方形。

教学策略:自主探索、讨论交流、点拨与练习

教学程序:

一、激活目标

出示主题图花坛,花坛的周长指什么?出示自行车,车轮的周长指什么?出示画有圆而且标出直径的正方形,这个圆的周长指什么?你能想出几种办法测量圆的周长?

二、活动建构

1、测量大小不同的四个圆的周长与直径,填表并计算。探究与发现:周长与直径的关系。(借助计算器)

2、介绍圆周率的.由来。

任意一个圆的周长与它的直径的商都是一个固定的数,我们把它叫做圆周率,用字母π来表示。圆周率=周长÷直径,即π=c÷d。“π”的由来:π是第十六个希腊字母,是希腊文圆周率的第一个字母,大数学家欧拉在一七三六年开始,在书信和论文中都用π来代表圆周率。

组织学生阅读资料,谈感受。

3、推导出:c=πd或c=2πr

4、计算花坛的周长,解决相关问题。

圆形花坛的直径是20米,它的周长是多少米?自行车车轮的直径是50厘米,绕花坛一周车轮大约转动多少周?

三、解释应用

一种铲车的前轮半径0.4米,后轮直径1.6米。行驶时,后轮转一周,前轮转几周?

四、反馈测评

1、一个圆形喷水池的半径是5米,绕着它走一周,要走多少米?

15厘米

a

b

2、小蚂蚁从a点沿着这条曲线爬到b点,大约要爬多远的距离?

3、公园内有一个圆形人工湖,绕湖一周要走1570米,湖中心有一个小岛,从湖边到小岛架一座桥,桥长大约多少米?

五、课堂小结

我的最大收获是什么?我有什么遗憾?我有什么疑问?

希望同学们在探索数学奥秘的过程中体验快乐,经历成长,创造成功!同学们,再见。

小学数学圆的周长教案篇5

一、教学目标

【知识与技能】

掌握圆的周长计算公式,知道周长与直径的关系,并能够利用圆的周长公式解决实际问题。

【过程与方法】

通过探究圆的周长公式的过程,培养学生观察、比较的能力,提高逻辑推理能力。

【情感态度与价值观】

积极参与数学活动,培养学习数学的兴趣。

二、教学重难点

?重点】圆的周长的计算公式。

?难点】圆的周长公式的推导过程。

三、教学过程

(一)导入新课

创设情境:多媒体展示大头儿子家的圆桌开裂,爸爸想用铁皮将圆桌固定起来的情境,请同学帮忙计算需要多长的铁皮。

学生根据问题情境不难想到计算需要的铁皮实际是计算圆一圈的长度。

教师明确,圆一圈的长度即为圆的周长。

引入课题——圆的周长。

(二)探索新知

1、探索发现

学生活动:同桌之间利用手中的圆形教具,测量圆形教具的周长。

学生汇报测量结果及测量方法。

教师引导学生思考,圆的周长大小与什么有关。

学生根据圆的特征,不难发现圆的周长与圆的大小有关,圆的大小与圆的半径、直径有关。

教师明确直径是半径的2倍,可看其中一项即可。

2、探索圆的周长与圆的直径关系

小组活动:以小组为单位,8分钟时间,利用手中不同大小的圆形教具,测量其周长及直径,并做好数据记录。观察测量结果,计算数据间的特殊关系。教师巡视,对有困难的小组及时给予指导。

小组汇报分享测量结果,教师板书。

学生分享计算结果,其中和、差、积无规律,商值在3.1左右。教师鼓励学生再多测量几组数据,并计算圆的周长与直径的比值。

学生汇报通过多次测量计算比值总在3.1左右。

教师讲解:实际圆的周长与圆的直径的比值是一个固定的数,命名为圆周率。用字母π表示,并向学生展示其写法和读法。

给出圆周率的特点:

(1)是一个无限不循环的小数;

(2)我国伟大的数学家祖冲之将其精确到小数点后七位;

(3)现在为了方便只要取小数点后两位即可。

(三)应用新知

问题:大头儿子家圆桌直径为1米,求需要买多长的铁丝?3.1米够吗?

教师强调:根据公式需要3.14米,不可四舍五入到3.1米,通过进一法,要买3.2米的铁丝。

(四)小结作业

提问:通过本节课,你有什么收获?

课后作业:回家找一个圆形,借助直尺测量,计算出周长。

四、板书设计

小学数学圆的周长教案篇6

一、指导思想与理论依据:

?新课标》指出:有效的数学学习活动不能单纯的依赖模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的的重要方式。数学学习活动应当是一个生动活泼的、主动的和富有个性的过程。

根据这一理念,在本节课的设计上,我突出两点,一是让学生主动经历数学结论的猜想动手操作,实践验证以及表述的过程;二是对学生放手,还学生自主的空间,自主探究,合作交流的学习方式贯穿课堂的始终。

二、教材及学情分析:

教材是在学生掌握了长方形和正方形周长,并初步认识了圆的基础上学习的。它是学生初步研究曲线图形的基本方法的开始,又是后面学习“圆的面积”以及今后学习圆柱、圆锥等知识的基础。学情分析:学生虽然有计算直线图形周长的基础,但第一次接触曲线图形,概念比较抽象不容易理解,推导圆周长的计算方法、理解圆周率的含义会有一定的困难。

三、教学目标、重点及难点:

1、知识和技能:

使学生直观认识圆的周长,掌握圆的周长的计算方法,理解圆周率的意义,并能正确灵活应用计算公式解决简单的实际问题。

2、过程与方法:

(1)通过组织学生观察和实验等活动,引导学生经历“猜想-验证-归纳、概括”的学习过程,认识圆周率。

(2)经历圆的周长计算公式的发现、探索过程,培养学生分析、抽象、概括,以及发现规律的能力。

3、情感与态度:

(1)通过学生动手操作、发现,激发学习兴趣,使学生体验探究问题的乐趣;

(2)结合圆周率的介绍,使学生受到爱国主义科学精神的教育。

(3)在解决问题过程中,增强应用意识。

教学重点:

让学生利用实验的手段,通过测量、计算、猜测圆的周长和直径的关系、验证猜测等过程理解并掌握圆的周长计算方法。

教学难点:

对圆周率的认识。

教学准备:

⒈圆形物体实物,。

⒉每个学生准备三个大小不同的圆片,一根线,一把直尺。

四、教法:

1、自主探究法。通过学生动手实践,寻求测量圆周长的方法,培养学生动手操作的能力,激活学生的思维。

2、合作交流法。合作交流是学生学习数学的主要方式。通过学生的团结协作,自主探索,讨论交流,培养学生的团结合作精神,激发学生主动学习的兴趣。

五、主要教学环节与设计:

通过以下环节教学本课:

一、创设情境,初步感知

二、合作交流,探究新知

三、实践应用,解决问题

四、畅谈收获,课外延伸

六、教学过程:

第一个环节:创设情境,初步感知师:

哪些同学会骑自行车?在骑车时,车轮向前滚动一周,行驶了多长的路程?怎样计算?(出示车轮向前滚动的录像。)

生:求行驶多长的路程就是求圆形的周长。

师:今天就来学习怎样计算圆的周长。

此环节的设计目的:从学生熟悉的自行车入手,让学生感知求车轮滚动一周就是求圆的周长,激发学生学习新知的兴趣。

第二个环节:合作交流、探究新知

(一)直观感知什么圆的周长通过以下活动帮助学生认识什么是圆的周长。

1、请你指出老师手中圆形物体的周长。准备一些实物有硬币、茶杯垫,让学生用手在圆周上滑摸等方式认识并理解圆的周长。

2、分析比较长方形、正方形和圆的周长各有什么不同?

3、指一指、描一描自己手中圆片的周长。

设计意图:让学生动手摸一摸后,初步感知圆的周长就是圆一周的长度。更增强了对圆周长的感性认识,并形象理解圆周长的意义。

(二)探究圆周长的计算方法

圆周长计算公式的推导这一内容,我安排了三个环节:

1、揭示矛盾,产生探索新知欲望。请同学们结合我们手里的圆想一想,有没有办法来测量它们的周长?

预设的几种情况:

(1)“滚动”——把实物圆沿直尺滚动一周;

(2)“缠绕”——用绳子缠绕实物圆一周并拉直;

(3)“折叠”——把圆形纸片对折几次,再进行测量和计算;

小结:以上的几种方法都是要“化曲为直”。

出示地球图片。

如果要计算地球赤道一周的长度,用刚才的绕线法、滚动法显然都无法测量怎么办?我们需要探讨求圆周长的一般方法。

设计意图:这个过程中让学生明白“缠绕”、“滚动”的方法是有局限性的,引发其探索“计算公式”的积极性、必要性,为深入研究圆周长的计算问题作好了“心理”铺垫。这样的矛盾,反而更能激发学生的求知欲。2、操作实验,探究圆周长计算方法在这一内容中,探究圆周率,理解圆周率是本课的难点,因此我设计让学生分小组合作,通过“猜想——实验验证——归纳概括得到结论”来完成。

(1)猜想,目的是让学生体会周长与直径之间的关系,重点解决“周长与什么有关”的问题。

师:圆的周长与它的什么有关呢?

生:圆的周长与它的直径有关。圆直径长,周长就大;直径短,圆周长就小。

(2)实验验证,目的是让学生发现周长与直径之间固定的倍数关系,重点解决“周长与直径有怎样的实质关系”的问题。

师:我们知道正方形周长是边长的4倍,那么圆的周长是直径的几倍呢?我们能不能像求正方形周长那样找到求圆周长的一般方法呢?

请同学们分组做个小实验,请利用手中的学具,用你喜欢的方法验证圆的周长与直径的倍数关系,记录在表格中。请你按照“我们组利用什么方法——过程怎样——结果如何”的顺序汇报实验过程

小组汇报:

生:我们测量的第一个圆直径是10厘米,周长是31厘米,周长是直径的3.1倍。第二个圆直径是2厘米,周长是6.5厘米,周长是直径的3.25倍。第三个圆直径是5.5厘米,周长是16.5厘米,周长是直径的3倍。

师:通过计算你们发现了什么?

生:每个圆的周长,都是它的直径长度的3倍多一些。

追问:那么是不是所有的圆周长与它直径都有这种关系呢?

最后师生共同概括出:任何一个圆的周长总是它的直径长度的3倍多一些。

师:由于测量时存在误差,导致结果不太一样,这很正常。你们的研究结果已经很接近数学家的结果了。谁知道我们把这个3倍多一些的数叫做什么?

生:圆周率。

师:你对圆周率还有哪些了解?

这个3倍多一些的数经过数学家周密计算发现是一个固定不变的数,我们把这个倍数叫做圆周率。读作π。对圆周率的发现最杰出的贡献者是祖冲之。圆周率是一个无限小数,在科技飞速发展的今天,计算机已经计算到了小数点后上亿位。小学阶段取它的近似值为3.14。板书:π≈3.14(出示相关的资料)

设计意图:通过同学们在小组中操作、交流、观察等活动,亲历感悟发现知识,达到理解的目的。圆周率有的学生早已知道,圆周率的有关知识是在师生共同补充交流中得到的,体现以学生为主体。祖冲之的事迹是一个非常好的爱国主义教育的典型。使学生感受到中国文化的博大精深,发展学生的情感态度价值观目标。

(3)得出结论师:你知道圆周长的计算方法了吗?

生:知道。

板书公式:c=πd,c=2πr

设计意图:推导圆周长公式,解决好了圆周率的问题,圆的周长的计算方法只是水到渠成的结果。

第三个环节:实践应用,解决问题

这一环节是对我们所探究结果的运用,即运用圆周长的计算公式来解决生活中的实际问题。

1、解决刚上课时提出的问题:车轮向前滚动一周,行驶了多长的路程?做到首尾呼应。

2、设计了三道有梯度的练习。

①d=5米, c=?

②r=5厘米 c=?

③c=6.28米d=?

3、明辨是非,下面的说法对吗?

①π=3.14( )

②大圆的圆周率小于小圆的圆周率。( )

③圆的周长是它的半径的2π倍。( )

意图:设计有关圆周率的判断,是帮助学生巩固新概念,加深对圆周率的理解。

第四个环节:畅谈收获,课外延伸作业:

赤道就像地球的“腰带”,它的长度大约是4万千米。你知道地球的半径大约是多少吗?

设计意图:在课堂即将结束时,我设置了与前面相呼应的求赤道周长的课外的拓展。这样的设置,把课堂的教学延伸到课外,提高学生的学习能力。

你有什么收获?(引导学生总结所学内容,学习方法,获得情感态度等体验。)

七、板书设计:

圆的周长

化曲为直 圆的周长÷直径=圆周率

c÷d=π 3.14×20=62.8(英寸)

c= πd 答:车轮向前滚动一周,行驶了62.8英寸。

c=2πr

会计实习心得体会最新模板相关文章:

小学数学整数的运算教案5篇

小学数学教案通用7篇

小学二年级数学教案5篇

人教版小学数学二年级上册教案及反思7篇

小学数学统计与概率教案7篇

小学数学方程的教案7篇

小学二年级数学教案优秀7篇

小学数学教案8篇

人教版小学数学二年级上册教案7篇

小学数学六年级位置与方向的教案7篇

    相关推荐

    热门推荐

    点击加载更多
    32
    c
    28130

    联系客服

    微信号:fanwen9944
    点击此处复制微信号

    客服在线时间:
    星期一至星期五 8:30~12:30 14:00~18:00

    如有疑问,扫码添加客服微信,
    问题+截图进行提问,客服会第一时间答复。