作为一名教育工作者,我们应该养成提前制定教案的好习惯,教案在起草的过程中,教师务必要强调与时俱进,会述职范文小编今天就为您带来了分数乘分数教案最新8篇,相信一定会对你有所帮助。
分数乘分数教案篇1
教
学
目
标 知识
与
技能 使学生理解百分数的意义;能够正确的读写百分数、运用百分数解决简单的实际问题。
过程
与
方法 使学生经历收集、分析、处理信息的过程,培养学生分析、比较、抽象、概括的能力和与人交流合作的能力。
情感
态度
与价
值观 使学生感受百分数在实际生活中的广泛应用,同时结合相关信息对学生进行思想教育。
教学重点 百分数的意义和写法。
教学难点 百分数与分数的联系和区别
教学准备及手段 课件
教 学 流 程 二次备课
(一)谈话引入,揭示课题。(2分钟)
师:同学们,课前教师让大家收集生活中的百分数,收集到了吗?在哪儿收集的?容易找吗?这说明了什么?
既然百分数这么有用,这节课我们就来学习百分数好吗?你想学习有关百分数的哪些知识?
这节课我们重点学习百分数的意义和写法。(板书课题)
(二)探究百分数的意义和写法。(20分钟)
1、百分数的意义
师:请同学们看大屏幕:(出示三杯糖水)
你认为哪杯糖水更甜?
学生争论后得出不好判断的结论。
老师给出三杯糖水中糖的含量:7克、13克、9克。问:这下能判断吗?还需要什么条件?
再给出糖水的重量:20克、50克、25克。问:这下能判断吗?看什么?
生:看糖占糖水的几分之几?
根据学生的回答板书:
师:这样能判断哪个杯更甜吗?怎样就容易看出来了?(通分)
师:百分数表示的是两个数量之间的倍数关系,是一个分率,后面不能带单位名称,所以百分数又叫百分率或百分比。(板书)
2、百分数的写法:
师:百分数通常不写成分数形式,而在原来的分子后面加上百分号“%”来表示。(板书)师示范写35%。
请一位学生板演26%、36%,其他学生在本上写。
师生交流:百分数怎样写规范、美观?
①两个小圆圈要写的小一点。②斜线的倾斜程度。
3、由刚才的不好判断,到现在的一目了然,是谁帮了我们的忙?大家在课前已经收集了许多生活中的百分数,你现在能说说这些百分数的具体含义吗?好,下面我们就来交流一下:四人小组交流,说说你收集的百分数,表示什么意思?
(全班交流)谁愿意向大家展示你收集的百分数?说说它的意义。
4、老师也收集了一些百分数,想不想看?
课件出示:读一读
(1)我国的耕地面积占世界耕地面积的7%;
(2)我国人口占世界人口的22%;
(3)在北京奥运会上,我国体育健儿共获得51枚金牌,占金牌总数的16.9%;
(4)我国发射人造卫星的成功率是100%。
这些百分数都表示什么意义,你知道吗?
看了这些信息,你想说什么?
(三)百分数与分数的区别和联系。(5分钟)
1、小组讨论:百分数与分数有什么区别和联系?
2、学生汇报:
学生可能回答:①分子②分母③读法④意义等的不同。
课件出示:
下面哪个分数可以用百分数来表示?哪个不能?说说为什么?
一堆煤 吨,运走了它的 。
百分数是分数吗?分母是100的分数是百分数吗?
得出结论:分数即可以表示两个数之间的倍数关系,也可以表示一个具体的数量,百分数只能表示两个数之间的倍数关系。百分数是特殊的分数。
(四)、拓展应用
1、百分数在我们的生活中无处不在,成语里也有百分数。
课件出示:请将下列词语用百分数表示出来
十拿九稳百里挑一百战百胜一举两得
(设计意图:使学生认识到生活中处处有数学)
(五)、总 结
1、这节课你对自己的表现满意吗?用一个百分数表示你的满意程度。
2、对教师满意吗?也用一个百分数表示。
3、最后,教师送给同学们一句名言,与大家共勉。
天才=99%的汗水+1%的灵感。
作业设计 做一做
板书设计 百分数的意义和写法
14% 读作:百分之十四
65.5% 读作:百分之六十五点五
120% 读作:百分之一百二十
心得反思
第2课时
学期总第 课时
教学课题 百分数与小数互化
主备教师 使用教师 授课时间 20__年 月 日
20__年 月 日
教
学
目
标 知识
与
技能 使学生理解并掌握百分数和小数互化的方法,能正确地把小数化成百分数或把百分数化成小数;在计算、比较,分析、探索百分数小数互化的规律的过程中,发展学生的抽象概括能力。
过程
与
方法 通过探索百分数和分数、小数互化的规律,激发学生的数学探索意识。
情感
态度
与价
值观 学生在教师的精心引导下,主动参与到数学活动中,通过合作交流,得出结论,提高数学素养。
教学重点 百分数与小数互化的方法,能正确进行两者之间的互化。
教学难点 归纳百分数与小数互化的方法。
教学准备及手段 投影片或多媒体课件。
教 学 流 程 二次备课
一、复习导入
1、百分数的意义是什么?指生回答。
生1:带有百分号的数叫百分数。
生2:表示一个数是另一数的百分之几的数叫百分数。
2、百分数与分数的区别在哪里?为什么要把百分数单独列一单元?
百分数表示两个数之间的倍比关系,又叫百分比或百分率,不能带计量单位;分数既可以表示两个数之间的倍比关系,叫分率,也可以表示具体的数量,能带计量单位。
百分数与分数既有联系又有区别,它在生活中广泛的运用到,所以有必要单独为一单元。
3、我们学过了整数、小数、分数、百分数,板书课题
二、看到这个课题,你想知道什么?
生1:为什么要转化?
生2:怎样转化?
师:对呀,为什么要相互转化呢?引导学生说出转化的意义。一是便于计算,二是便于比较。(板书),那怎么转化呢?这就是我们今天主要研究的内容。不过,百分数怎么转化成小数,小数又怎么转化成百分数,老师想把讲台让给你们,请同学们来当小老师,让讲台成为你们的舞台。
三、合作探究,学习新知
1、学生自学课本84页(两分钟)
2、小组讨论(三分钟)
3、指生上台汇报,集体交流小数转化成百分数的方法
(1)出示例1:(要求学生讲)
(2)小老师甲:要把小数化成百分数,要先把小数化成分母是100的分数,然后再把这个分数改写成百分数。
3÷5=0.6= =60%
4÷6≈0.667 = =66.7%
(3)小老师乙:请大家观察一下,这个过程先把小数化成了分数,显得麻烦了些。而我可以将小数直接化成百分数的。只要把小数点向右移动两位,同时在后面添上百分号就行了。
(4)教师说明:当小数点向右移动两位时,原数就扩大100倍,再添上百分号,又使它缩小100倍。所以原数大小是不变的。
4、师:学到这里也累了,今天要学习的内容学完了吗?(没有,还有百分数转化成小数的方法没学),噢,那我们接着学百分数如何转化成小数的。
(1)出示例2:(要求学生讲)
(2)小老师丙:要把百分数化成小数,可以先把百分数改写成分母是100的分数,然后再用分子除以分母,把分数转化成小数。
(3)启发学生口述每题的转化过程,板书:
750×20%
=750÷
=750×0.2
=150(人)
750×20%
=750×
=750×
=150(人)
(4)小老师丁:老师,我的方法更简便,能将百分数很快地直接化成小数?(把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位)
(5)使学生明白:当把百分数的百分号去掉时,原数就扩大了100倍;然后再把它的小数点向左移动两位,又使它缩小100倍,所以原数的大小不变四、拓展应用
做一做
五、总 结
通过这节课的学习你想和大家说点什么?
作业设计 练习十八6、7题
板书设计 百分数与小数互化
例1、3÷5=0.6= =60%
4÷6≈0.667 = =66.7%
例2 750×20% 750×20%
=750÷ =750×
=750×0.2 =750×
=150(人) =150(人)
心得反思
第3课时
学期总第 课时
教学课题 “求一个数比另一个数多(或少)百分之几”的应用题
主备教师 使用教师 授课时间 20__年 月 日
20__年 月 日
教
学
目
标 知识
与
技能 使学生在现实情境中,理解并掌握“求一个数比另一个数多(少)百分之几”的基本思考方法,并能正确解决相关的实际问题。
过程
与
方法 使学生在探索“求一个数比另一个数多(少)百分之几”方法的过程中,进一步加深对百分数的理解。
情感
态度
与价
值观 体会百分数与日常生活的密切联系,增强自主探索和合作交流的意识,提高分析问题和解决问题的能力。
教学重点 求一个数比另一个数多(或少)百分之几的应用题的解题方法。
教学难点 理解求“一个数比另一个数多百分之几”这个问题的具体含义,弄清数量关系。
教学准备及手段 多媒体课件
教 学 流 程 二次备课
(一)导入
1 解答“一个数是另一个数的百分之几”用什么方法?
2 列式计算:4是9的百分之几?
50是200的百分之几?
3 解答这类百分数应用题的关键是什么?
4 出示课件复习题:
一个乡去年原计划造林12公顷,实际造林14公顷,实际造林是原计划的百分之几?
5 学生读题,找出题中的单位1,并独立解答。
6揭示课题:如果把这道题的问题变为实际造林比原计划增加了百分之几?应该怎样解答呢?这就是我们本节课要继续研究的比较复杂的百分数应用题。
(二)教学实施
1 出示例3
(1)指名读题。
(2)让学生找出题中的单位1,并画出线段图。
(3)找一名学生到前面板演,并说出自己画图的依据。
(4)启发学生思考:求实际造林比原计划增长百分之几是哪两个量比较?哪个量是单位1.(板书:增加的÷原计划的)
(5)学生尝试列式计算。(1名同学板演)
(6)想一想这道题还有其他的做法吗?
板书:14÷12≈1.167=116.7%
116.4%-100%=16.7%
(7)比较两种算法的相同点是什么?
2 将例3中的问题改为“原计划比实际少百分之几”?该如何解答呢?
(1)提问:这道题中是那两个量进行比较?把哪个量看成单位1,先求什么?再求什么?
(2)学生列式,老师板书。
(14-12)÷14
(3)比较观察
将例3改变问题后的列式发生了怎样的变化?为什么除数发生了变化?三、拓展应用
(1).分析数量关系。
(1)求今年产量是去年产量的百分之几,是把( )看作单位“1”,是( )和( )比,所以用( )÷( ).
( 2)求今年小麦的产量比去年增产百分之几,是把( )看作单位“1”,是( )和( )比,所以用( )÷( )。
(3)求女生人数比男生人数少百分之几,是把( )看作单位“1”,是( )和( )比,所以用( )÷( )。
(2).操场上有男生25人,女生20人。女生人数比男生人数少百分之几?
(3).一辆自行车原价是312元,现价比原价降低了168元。降低了百分之几?
(4).甲校学生人数比 乙校多5%,乙校学生人数比甲校少百分之几?
四、课堂小结。
这节课我们学习了一类怎样的百分数应用题?解答这类百分数应用题的关键是什么?
作业设计 做一做
板书设计 “求一个数比另一个数多(或少)百分之几”的应用题
例3、14÷12≈1.167=116.7%
116.4%-100%=16.7%
答:(略)
心得反思
第4课时
学期总第 课时
教学课题 “求比一个数多百分之几的数是多少”的应用题
主备教师 使用教师 授课时间 20__年 月 日
20__年 月 日
教
学
目
标 知识
与
技能 掌握稍复杂的求比一个数多百分之几的数是多少的问题的解决方法;
能进一步理解百分数应用题与相对应的分数应用题之间的联系。
过程
与
方法 增强应用意识,体会百分数在实践生活中的应用。
情感
态度
与价
值观 提高学生类推、分析、解决问题的能力。
教学重点 找准单位“1”,掌握求比一个数多百分之几的数是多少的问题的解决方法。
教学难点 找准单位“1”,掌握求比一个数多百分之几的数是多少的问题的解决方法。
教学准备及手段 多媒体课件
教 学 流 程 二次备课
一、 回顾旧知,复习铺垫
(1)、口算 3/4×4 2/3÷2/3 1+12%
(2)、20的3/5是多少? 30的70%是多少?
二、 师生互动,探究新知
(一)、自主提问,生成问题。
1、教师口述信息:学校图书室原有图书1400册,今年图书册数增加了12%。
2、抽生复述刚才听到的信息。
3、学生提出相关百分数问题,引入例题。
预设问题:①、增加了多少册? ②、今年有多少册图书? ③今年的图书册数是原来的百分之几?
(二)、解决问题,引出例题。
1、出示例4:
师述:用刚才的信息加上同学们提出的第二个问题,就是我们今天要学习的例4。
例4:学校图书室原有图书1400册,今年图书册数增加了12%。现在有多少册图书?
2、分析数量关系,确定解决问题的方法。
(1)、重点指导分析“今年图书册数增加了12%”。
引导:思考“今年图书册数增加了12%”是什么意思?在那见过类似的问题?如果把12%换成一个分数你会解决吗?(我们可以借助解决分数应用题的方法来解决百分数应用题。)等量关系是什么?(今年图书册数=原来图书册数+增加的册数)单位“1”是那个量?我们先求什么?(即问题①)求增加了多少册就是求什么?怎么列式?(1400×12%)(教师指导一个数乘百分数的计算方法。)
(2)、根据等量关系式列式解答,强调过程的完整性。(抽生板演)
(3)、抽生说说算式的意义,回顾解题思路,说说解题的关键点是什么?(找单位“1”和等量关系。)
(三)、一题多解,拓展思维。
思考:解决这类问题还有什么方法?
(1)、提示:借助刚才提出的问题③思考。
(2)、学生独立思考列式。1400×(1+12%)
(3)、抽生说思路。
(4)、借助线段图分析“今年的图书册数是原来的百分之几?”
(5)、找准解决问题关键点。
(6)、列式解答。
(四)、分析特征,自主归类。
1、师生一起归类,这类题属于“求比一个数多(少)百分之几的数是多少”的问题。
2、回顾这类题的解题思路与方法。
三、联系实际,对比提升。
1、改编例4并解答。
学校图书室现在有图书1568册,今年图书册数增加了12%。今年图书有多少册?
(1)、学生自主思考解答。
(2)、小组合作解答。
(3)、全班交流。
2、分析这道题与例题有什么相同点和不同点。
3、比较今天学的这类题与分数应用题有什么相同点和不同点。
课件出示例5
学生试做,师板书:
1×(1-20%)×(1+20%)=0.96
(1-0.96)÷1=0.04=4%
四、拓展应用
比30米多60%是( )米。 40千克比( )少20%。
五、全课总结。
这节课你收获了什么?
作业设计 课后做一做
板书设计 “求比一个数多百分之几的数是多少”的应用题
例4 1400×(1+12%)
=1400×112%
=1568(册)
答:(略)
例5 1×(1-20%)×(1+20%)=0.96
(1-0.96)÷1=0.04=4%
答:(略)
心得反思
分数乘分数教案篇2
教学目标:
使学生了解"分数"产生的原因,理解分数的意义,弄清分子,分母,分数单位的含义.
教学重点:
使学生理解"分数"的意义,弄清分母,分子及分数单位的含义.
教学难点:
使学生理解"分数"的意义,弄清分数单位的含义.
教学课型:
新授课
教具准备:
课件
教学过程:
创设情景,温故引新
1、提问:
a、大家知道分数吗谁能说一个分数
b、你能举个实例说说这个分数的意义吗
2、述:说得好,对不能用整数准确表示结果的问题,我们可用分数来解决.即:把一个物体或一个计量单位(或者单位"1")平均分成若干份,用它的一份或几份来表示.
3、揭示课题:分数的意义
二,联系实际,探究新知
自主学习,整体感知分数的知识.
(1)相互交流:①关于分数我已经知道了什么请把已知道的讲给同学们听.
(2)自学理解:①关于分数,自学后我又知道了些什么
②我还有什么不明白的地方呢
③关于分数我还想知道什么
2、探究深化,进一步理解分数的意义.
(1)用分数表示下面各图中的阴影部分.[课件1]
(2)填空.[课件2]
①把一条线段平均分成5份,1份是它的()/();4份是它的()/().
②把一块饼平均分成2份,每份是它的()/().
③把一个正方形平均分成4份.1份是它的()/();3份是它的()/()
(3)用一张长方形的纸,折出它的1/4,并涂上阴影.
用一张正方形的纸,折出它的3/8,并涂上阴影.
3、小结.
我们可以把许多物体看作一个整体,比如:一堆苹果,一批玩具,一班学生,一个计量单位或是许多物体组成的一个整体,都可以用自然数1来表示,通常我把它叫做单位"1".
板书:一个物体
单位"1"一个计量单位
许多物体组成的一个整体
把单位"1"平均分成若干份,表示这样的一份或者几份的数,叫做分数.
三,加强练习,深化概念
比赛:请两位同学站起来.
提问:
a、这两位同学是这组人数的几分之几
b、这两位同学是两组人数的——这两位同学是全班人数的——
四,家作
1、p88.1,2
2、p89.3
板书设计:
分数的意义
一个物体
单位"1"一个计量单位
许多物体组成的一个整体
把单位"1"平均分成若干份,表示这样的一份或者几份的数,叫做分数
分数乘分数教案篇3
教学目标:
1、在学生学习了分数除以整数、整数除以分数、一个数除以分数计算法则基础上,引导学生总结出分数除法的计算法则,能利用计算法则,正确、迅速地进行分数除法的计算。
2、培养学生的语言表达能力和抽象概括能力。
3、培养学生良好的计算习惯。
教学重点:
总结出一个数除以分数的计算法则,并抽象概括出分数除法的计算法则。
教学难点:
利用法则正确、迅速地进行计算,并能解决一些实际问题。
教具准备:多媒体课件、实物投影。
教学过程:
一、旧知铺垫(课件出示)
1、计算下面,直接写出得数
×4 ×3 ×2 ×6
÷4 ÷3 ÷2 ÷6
2、列式,说清数量关系
小明2小时走了6 km,平均每小时走多少千米?
(速度=路程÷时间)
二、新知探究
(一)、例3,
1、实物投影呈现例题情景图。
理解题意,列出算式:2÷ ÷
2、探索整数除以分数的计算方法
(1)2÷如何计算?引导学生结合线段图进行理解。
(2)先画一条线段表示1小时走的路程,怎么样表示小时走了2 km这个条件?(将线段平均分成3份,其中2份表示的就是小时走的路程)
(3)引导学生讨论交流:已知小时走了2 km,要求1小时走了多少千米?可以先算什么,再算什么?
(4)根据学生的回答把线段图补充完整,并板书出过程。
先求小时走了多少千米,也就是求2个,算式:2×
再求3个小时走了多少千米,算式:2× ×3
(5)综合整个计算过程:2÷ =2× ×3=2×
(二)、小结出计算法则:从上面这个推算过程,我们发现——整数除以分数,等于用整数乘这个分数的倒数。
(三)、计算÷,探索分数除以分数的计算方法
1、学生根据整数除以分数的计算方法,自己独立尝试分数除以分数的计算。
÷ = × =2(km)
2、学生用自己的方法来验证结果是否正确。
3、总结计算法则:无论是整数除以分数,还是分数除以分数,都可以转化成乘法来计算,也就是说除以一个不等于0的数,等于乘上这个数的倒数。
三、当堂测评
1、p31“做一做”的第1、2题。
2、练习八第2、4题。
学生独立完成,教师巡回指点,帮助学困生度过难关。
小组内讲评,发挥组长的作用,以求“兵强兵、兵练兵”。
四、课堂总结
1、这节课你们有什么收获呢?
2、在这节课上你觉得自己表现得怎样?
设计意图:
这两节课的教学我从以下着手:
1、重视分数除法的意义过程性。我只是让学生理解,并没有强调口述,而是重点让学生应用分数除法的意义,根据给出的一个乘法算式写出两道除法算式,使得对除法的意义有更深的理解。
2、在分数除以整数的教学上,我把学习的主动权交给学生。让他们动手操作、集思广益,根据操作计算方法。让学生从小养成自主学习、勇于探究的好习惯。
分数乘分数教案篇4
教材分析
这节课是在学习了“已知一个数的几分之几是多少,求这个数”的分数应用题的基础上,根据稍复杂的求一个数的几分之几是多少的分数应用题的数量关系,使学生掌握解题思路,学会用方程解答。根据新旧知识的联系,抓住了数量关系相同,通过复习题的分析解答,让学生找出熟悉的数量关系,再把题进行改动变化。在边画图、边分析的过程中,沟通了知识间的联系,便于学生理解和思维,促进了学生分析思维能力的发展和综合运用知识灵活解决实际问题的能力。
学情分析
在已经学习了,已知一个数的几分之几是多少,求这个数是多少的问题的基础上,六年级学生能在一定的基础之上去拓展,去学习更新的知识。
教学目标
逆向思维,能根据具体的数量和分率,求出单位“1”的量。通过教学, 使学生在理解分数除法意义及掌握分数乘法应用题解题思路的基础上,掌握已知一个数的几分之几是多少求这个数的稍复杂分数除法应用题的解题思路和方法,能比较熟练地用方程解答一些简单的实际问题。
教学重点和难点
1、 能确定单位“1”,理清题中的数量关系。
2、利用题中的等量关系用方程解答。
教学过程
一、1、苹果的重量是x千克,梨的重量比苹果多5千克 。
⑴、梨的重量比苹果多了( )千克。
⑵、梨的重量是( )千克。
2、钢笔x元,比毛笔少了3元 。
⑴、钢笔比毛笔少了( )元。
⑵、毛笔是( )元。
3、小结:解答分数应用题的关键是找准单位“1”,如果单位“1”的具体数量是已知的,要求单位“1”的几分之几是多少,就可以根据分数乘法的意义,直接用乘法计算。
二、新授课
1、教学补充例题:水果店运来了一些苹果,已经卖了36千克 ,还剩下20千克,水果店运来了多少苹果?
(1)卖了 是什么意思?应该把哪个数量看作单位“1”?
(2)引导学生理解题意,画出线段图。
(3)引导学生根据线段图,分析数量关系式:运来苹果的重量-卖了的重量=剩下的重量
(4)指名列出方程。解:设运来苹果x千克。
x-36=20
2、教学例2
(1)出示例题,理解题意。
(2)比航模组多是什么意思?引导学生说出:是把航模组的人数看作单位“1”,美术组少的人数占航模组的 (1+)
(2)学生试画出线段图。
(3)根据线段图,结合题中的分率句,列出数量关系式:
航模小组人数+美术小组比航模小组多的人数=美术小组人数
(4)根据等量关系式解答问题。
解:设航模小组有人。
(1+)=25
=25÷
=20
答:略。
三、小结
1、今天学习了两道应用题,找出它们的共同点?(这两道应用题,题里的单位“1”都是未知的数量,都可以列方程来解,这样顺着题意列出方程思考起来比较方便。)
2、用方程解答稍复杂的分数应用题的关键是什么?(关键是找准单位“1”,再按照题意找出数量间的相等关系列出方程)
四、练习
练习十第4、12、14题。
分数乘分数教案篇5
一、说教材
?百分数的意义和写法》是义务教育课程标准实验教科书小学数学六年级上册第五单元“百分数”中较为重要的教学内容。百分数是在学生学过整数、小数,特别是分数的概念和应用题的基础上进行教学的。百分数实际上是表示一个数是另一个数的百分之几的数,因此,它同分数有密切的联系。百分数在实际中有广泛的应用,因此在教学时要密切联系实际理解百分数的意义,并能正确地运用它解决实际问题。
二、说学情
六年级的学生,大部分年龄在12岁左右,这时学生的抽象逻辑思维发展较快,所以我们在教学上应加强新旧知识的联系,百分数的知识在生活中其实很常见,所以我们不能完全把它作为新知识进行教学,一味的去讲,要引导学生在已有知识的基础上类推出新知识。这样既可以复习巩固前面学过的知识,又有易学生理解、掌握新知识,提高教学效率。
三、说教学目标
1、知识与技能:理解百分数的意义;掌握百分数的读、写法以及百分数与分数的区别。
2、过程与方法:通过收集资料等活动,体验数学与日常生活密切相关,增强用数学眼光观察生活的意识。
3、情感、态度、价值观:在民主、和谐、活跃的课堂氛围中体验数学的魅力以及学习数学的快乐。
教学重点:百分数的意义和写法
教学难点:百分数与分数的联系和区别
四、说教学方法
新课标倡导自主、探究的学习方式,结合我区“四环节”的教学模式,为了更好的完成教学目标,我选择了直观演示法、合作探究法、巩固练习法等,让学生积极、主动地参与到学习中去。
五、说教学思路
本节课我是这样安排的,由于本节课与现实生活联系密切,首先课前让学生广泛收集、整理生活中的百分数,让学生在课堂中进行交流,充分的认识百分数,会读、写百分数;然后让学生结合实例通过小组的讨论和总结自己归纳出百分数的意义,并且了解百分数与分数的联系和区别。
六、说教学过程
(一)创设情境,质疑自探
(二)分组学习,合作交流。
师:看看在你搜集的材料中有百分数吗?请说来听听。
师结合学生的回答板书关键词,如:
钙15﹪
纳米纤维21.6﹪
师:你知道这个15﹪表示什么吗?
(有学生知道就让他说,若不知道,就说“没关系,我们先把这个问题记下来,一会儿我们共同研究”。板书问题1:百分数的意义)
师:除了想知道“百分数表示的意义”以外,你们还想知道有关百分数的哪些知识?
此时,教师要肯定学生提出的每个问题,并及时地将这些问题板书在黑板上(如:人们为什么喜欢百分数?百分数的写法等)
当学生谈不到分数与百分数的区别时,教师便质疑:在这之前,我们已经学过了“分数”,那为什么还要学习百分数呢?说明百分数肯定有与分数不同的地方!(板书问题4:百分数与分数的区别。)
师:好!下面,就让我们一道带着这些问题自学教材,看能否从书中找到这些问题的答案。
师:通过自学,你明白了哪些问题?还有哪些问题不明白?请先在四人小组内交流并解决。
(三)精讲点拨,巩固训练。
点拨一、人们为什么喜欢百分数?
引导学生从教材中的实例出发去领会——将分母统一为100便于比较的道理。
分数乘分数教案篇6
教学目标:
1.通过多种途径查找资料,经历走进生活、收集整理、交流表达等过程,让学生
了解有关储蓄的知识的同时培养学生搜集处理信息的能力。
2.结合百分率的知识,运用调查、观察、讨论、分析数量关系等方式,学习利息的计算方法,并运用所学的数学知识、技能和思想来解决实际问题。
3.通过策划理财活动,让学生感受数学知识服务于生活的价值,培养科学理财的意识。
教学重点:利息的计算方法
教学难点:税后利息的计算。
设计理念:本课除了要让学生掌握利息的计算方法,更重要的是要让学生结合百分率的知识,通过策划理财活动,让学生感受数学知识服务于生活的价值,从小培养科学理财的意识。
教学步骤:
一、情境导入
1. 提问:你家中暂时用不到的钱怎么处理的?(课前布置同学们向自己的爸爸妈妈了解家中暂时用不到的钱怎么处理的)
你们知道为什么要把积余下来的钱存到银行里吗?(明确:人们把钱存入银行或信用社,这叫做存款或者储蓄。这样不仅可以支援国家建设,也使得个人用钱更加安全和有计划,还可以增加一些收入。)
2. 关于储蓄方面地知识你还了解多少?(全班交流自己收集到信息)
根据学生交流地情况摘其要点板书:
利息 本金 利率
多媒体出示告诉你:存入银行的钱叫做本金,取款时银行除了还给本金外,另外付给的钱叫做利息。利息占本金的百分率叫做利率。按年计算的叫做年利率,按月计算的叫做月利率。
出示利率表。(略,同书上第5页利率表)
师:你从这张利率表上能获得哪些信息?说说年利率2.52%的含义。你认为利息与什么有关?怎样求利息?(学生讨论)
根据学生的回答板书:利息=本金利率时间
二、教学例3
1.出示例3。读题后明确,二年期的利率应该就是表格中对应的二年存期的利率,不是一年期的利率2。
师:要求利息,需要知道哪些条件?你会列式求利息吗?(试着做一做,集体订正)
2.教学试一试
(1)亮亮实际能拿到这么多利息吗?为什么?(请了解利息税的同学解释)
教师再说明:这里求得的利息是税前利息,也叫应得利息。但是根据国家税法规定,从1999年11月开始,储蓄所得的利息应缴纳20%的利息税,由储蓄机构代扣。税前利息中扣掉利息税后余下的部分即是自己实际得到的利息,即税后利息,也叫实得利息。购买国家债券、教育储蓄不缴纳利息税。
这里的20%是什么?
你觉得应该怎样计算税后利息呢?可以先算什么?用计算器计算亮亮实得利息是多少元?(学生用计算器计算)
(2)小结:一般我们从银行取出来的都是税后利息,所以在多数计算中最后要将利息税减掉。
(3)引申:如果问题问亮亮到期一共可取出多少元?这里的一共是什么意思,包含哪些内容。(明确可取出多少元:本金+税后利息)
这个问题由你来解答。
三、巩固练习
1.完成练一练。
应得利息怎样求?实得利息怎样求?(学生列式解答)
二者的区别是什么?实得利息是应得利息的百分之几?(组织学生讨论)
2.做练习二的第5题。
提醒学生教育储蓄不需缴纳营业税。这里的本金和利息一共多少元是什么意思?(指名学生回答,集体订正)
3.理财我能行
谈话:你们对家中的存款情况了解多少?能说给大家听听吗?当然该保密的就不要说了。(学生交流)
学生交流后出示下面题目(同时出示利率表)
(1)张明家有5000元计划存入银行三年,张明的妈妈想请我们班的同学帮助算一算,是存定期三年合算?还是存定期一年,然后连本带息再转存合算呢?(学生说出自己的想法)
(2)如果你有1000元,根据你家的实际情况,你打算怎样投资?请你设计一个理财方案。
四、全课小结
这节课我们学习了什么知识?通过本节课的学习,你学会了什么?
师:通过今天的学习,希望同学们有意识地养成勤俭节约,计划消费的习惯,并能把所学知识应用到实际生活中,发挥其价值。
五、布置作业(两道实践题让学生在家长的陪同下到银行去储蓄,从实践中认识储蓄)
1.到银行存压岁钱;
2.找一份存折或存单,看懂上面的每一栏,并从上面找到本金、利率、时间,能计算到期后这份存折(存单)一共可取出多少元?
分数乘分数教案篇7
课题一:(一)
教学要求 ①使学生了解分数的产生,理解,认识分数的分母、分子,认识分数单位的特点,能正确读、写分数。②培养学生抽象概括能力。③感受知识来源于实践,又服务于实践的观点。
教学重点 理解。
教学用具 教材第84~85页有关的投影片、线段图等。
教学过程
一、创设情境
1.提问:①把6个苹果平均分给2个小朋友,每人分得几个?(3个)②把一个苹果平均分给2个小朋友,每人分得多少?(每人分得这个苹果的 )。
2.指定一名学生用1米长的直尺量一量黑板的长度是多少米。(比3米长,比4米短)。
3.揭示课题
在实际生产和生活中,人们在测量和计算时,往往得不到整数的结果,在这种情况下就产生了分数。究竟什么叫分数呢?这节课我们就来学习。
二、探索研究
1.学生回忆:我们已经学过,把一个物体或一个计算量单位平均分成若干份,表示这样的一份或几份的数叫做分数。例如:
(1)出示月饼图。提问学生:把一块饼平均分成2份,每份是它的几分之几?
(2)出示正方形图。提问:把这张正方形纸怎样分?分成了几份?1份是它的几分之几?这样的3份呢?( 、 )
(3)出示线段图提问:把一条线段平均分成5份,这样的1份是这条线段的几分之几?这样的4份呢?
如果把1分米的长度平均分成10份,这样的1份是它的几分之几?7份呢? 表示什么?
2、进一步认识单位1。
以上都是一个物体、一个计量单位看作一个整体,我们也可以把许多物体看作一个整体,如4个苹果、一批玩具、一个班的学生等。例如:
(1)出示课本第86页的苹果图。提问:把4个苹果平均分成4份,一个苹果是这个整体的几分之几?
(2)出示熊猫图。提问:把6只熊猫玩具看作一个整体,平均分成3份,一份是这个整体的几分之几? 表示什么?
(3)练习:说出下图中涂色的部分各占整体的几分之几。
● ●
●○○○○○ ● ●
●○○○○○ ● ●
● ○
● ○
● ○
3.揭示。
(1)观察以上教学过程 所形成的板书。
一个物体
计量单位 单位1
一些物体
告诉学生:像这样表示一个物体、一个计量单位或是许多物体组成的一个整体,都可以用自然数来表示,通常我们把它叫做单位1。(板书:单位1)
(2)反馈。①在以上各图中,分别是把什么看作单位1?② 、 、 各表示什么意义?③议一议:什么叫做分数?
(3)概括并板书。把单位1平均分成若干份,表示这样的一份或者几份的数叫做分数。
4.练习。练习十八第1、2、3题。
5.教学分数各部分名称、分数单位。分数的读、写法。
(1)教师任意写出几个分数,让学生说出分数各部分的名称。
(2)阅读课本第85页最后一段并思考:一个分数中的分母、分子各表示什么?
(3)认识分数单位,初步了解分数单位的特点。
练习:① 的分数单位是,它有个 。
② 的分数单位是,它有个 。
③个 是。
④ 是个 。
(4)想一想:读、写分数的方法是怎样的?
读作 ,表示 个 。
读作 ,表示有 个 。
三、课堂实践
1. 表示把平均分成份,表示这样的份的数。
2. 读作,分数单位是,再添上个这样的单位是整数1。
四、课堂小结
1、什么叫做分数?如何理解单位1?
2、什么是分数单位?分数单位有什么特点?
五、课堂作业
练习十八第5、6题。
课题二:(二)
教学要求 ①使学生进一步理解及分数单位,并能正确地应用。学会用直线上的点表示分数。能联系,正确解答求一个数是另一个数的几分之几。②进一步培养学生的抽象概括能力。③渗透数形结合思想。
教学重点 理解。
教学过程
一、 创设情境
1.用分数表示图中阴影部分。
▲▲ ▲▲
△△ ▲▲
2.口答:什么是分数?如何理解单位1?
3.填空。
是个 。 的分数单位是
7个 是。 的分数单位是
二、揭示课题
出示学习内容及学习目标。板书课题:。
三、探索研究
1.认识用直线上的点表示分数。
分数也是一个数,也可以用直线(数轴)上的点来表示。
(1)认识用直线上的点表示分数的方法。
①画一条水平直线,在直线上画出等长的距离表示0、1、2。
②根据分母来分线段,如果分母是4,就把单位1平均分成4份。如: 、 :
0 1 2
(2)提问:如果要在直线上表示 ,该怎样画?启发点拨。
①先画什么?再画什么?
②应把0~1这一段平均分成几份?如果分母是8呢?分母是10呢?
③ 应用直线上的哪一个点来表示?
(3)如果要在这条直线上表示分母是10的分数,该怎么办?
这条直线上0~1之间的第七个点表示的分数是多少?
2.练习。
(1)教材第87页下面做一做的第2题。
(2)用直线上的点表示 、 、 、 。
3.教学例1。
(1)指名读题,帮助学生理解题意。
(2)出示讨论题,同桌讨论。
①这题中把什么看作单位1?
②1人占这个整体的几分之几?
③5人占这个整体的几分之几?
(3)汇报讨论结果,板书答语。
(4)小结分析思路。口答这类求一个数是另一个数的几分之几的题目时,一般要根据先找单位1是几,就是分母平均分成几份,其中1份是分数单位,再看有几个这样的分数单位,就是几分之几。
4、练习。教材第88页的做一做。
四、课堂实践
1.教材第87页的做一做。
2.用直线上的点表示 下面的分数: 、 、 、 、 。
3.食堂有一批面粉,吃了45袋,还剩28袋,吃了的和剩下的各占这批面粉的几分之几?
五、课堂小结
1.用直线上的点表示分数的方法是怎样的?
2.口答:求一个数是另一个数的几分之几的依据是什么?解题时应该怎样思考?
六、课堂作业
练习十八第4、7、8题。
课题三:分数与除法的关系
教学要求 ①使学生正确理解和掌握分数与除法的关系,会用分数表示两个数相除的商。②培养学生的逻辑推理能力。③渗透辩证思想,激发学生学习兴趣。
教学重点 理解和掌握分数与除法的关系。
教学用具 投影片(教材第89页的饼图)
教学过程
一、创设情境
1.填空。
(1) 表示。
(2) 的分数单位是,它有个这样的分数单位。
2.计算。(1)58 (2)49
二、揭示课题
我们知道,在计算整数除法时经常遇到除不尽或得不到整数商,有了分数,就可以解决这个问题。这节课我们就来学习怎样用分数表示除法的商,认识分数与除法的关系。(板书课题)
三、探索研究
1.教学例2
(1)读题后,指导学生根据整数除法的意义列出算式。板书:
13=
(2)讨论:1 除以3结果是多少?你是怎样想的?
(3)教师画出线段示意图,帮助学生理解。
1米
?
通过讨论使学生明白:把1米平均分成3份,其中一份应是1米的 ,就是 米。
(3)写出答语。
2.教学例3。
(1)读题后,引导学生列出算式:34。
(2)指导学生动手操作:拿出三张同样大小的圆形纸片,把它看作3块饼,用剪刀把它们分成同样大小的4份。
(3)请几名学生口述分法及每份分得的结果,教师总结几种不同的分法。
(4)归纳。从上面的操作可以知道,把3块饼平均分成4份,无论怎样分,每一份都是3块饼的 ,即3个 块,把3个 块拼合起来就是1个饼的 ,即 块。因此,
34=(块)。
由此可见, 不仅可以理解为把1块饼(单位1)平均分成4份,表示这样的3份的数,也可以看作把3块饼组成的整体(单位1)平均分成4份,表示这样一份的数。
3、认识分数与除法的关系。
(1)引导学生观察13=、34=这两道算式,想一想:
①两个自然数相除,在不能得到整数商的情况下,还可以用什么数表示?
②用分数表示商时,除式里的被除数、除数分别是分数里的什么?
③分数与除法的关系是怎样的?
(2)教师总结,学生发言,归纳出以下三点:
①分数可以表示整数除法的商;
②在表示整数除法的商时,要用除数作分母、被除数作分子;
③除法里的被除数相当于分数里的分子,除数相当于分数里的分母。(强调相当于一词)
分数与除法的关系可以表示成下面的形式:
板书:被除数除数=
(3)如果用a表示被除数,b表示除数,那么分数与除法的关系可发怎样表示?
板书:ab=(b0)
(4)想一想:这里的b能为0吗?为什么?
启发学生说出在整数除法里,除数不能是零,在分数中分母也不能是零,所以这里b0。
(5)再想一想:分数与除法有区别吗?区别在哪里?
着重强调:分数是一种数,但也可以看作两个数相除。除法是一种运算。
4、学生阅读教材,质疑问难。
四、课堂实践
教材第91页中间的做一做。
五、课堂小结。
引导学生回顾全课,说说学到了什么,自我总结,教师作补充。
六、课堂作业 。练习十九第1~3题。
课题四:分数与除法关系的应用
教学要求 ①进一步理解分数与除法的关系,并能运用这一关系解决有关的实际问题。②培养学生迁移类推能力。③知道事物间在一定的条件下是可以相互转化的观点。
教学重点 求一个数是另一个数的几分之几的应用题。。
教学过程
一、创设情境
1.口答:30分米=米 180分=时
练习后引导学生回顾把低级单位的名数改写成高级单位名数的方法。
2.说一说:分数与除法的关系?
3.用分数表示下面各算式的商。
(1)79(2)47(3)815(4)5吨8吨
二、揭示课题
这节课学习分数与除法关系的应用。(板书课题)
三、探索研究
1.出示例4。
(1)出示例4并审题。
(2)提问:根据把低级单位的名数改写成高级单位名数的方法,这两题该怎样计算?当两数相除得不到整数商时,商应该如何表示?
让全体学生尝试练习。
(3)集体订正。订正时让学生说说是怎样想的?
(4)比较例4与复习题第1题有什么不同的地方,有什么相同的地方?
重点说明当两数相除得不到整数商时,其结果可以用分数表示。
2.练习教材第91页下面的做一做。
3.教学例5 。
(1)出示教材第92页复习题,让学生独立列式解答。
集体订正时启发学生分析:这道题把谁与谁比,求鸡的只数是鸭的几倍,把什么看作标准,用什么方法计算?算式怎样列?
板书:3010=3
答:鸡的只数是鸭的3倍。
(2)出示例5并读题,鼓励学生从不同角度思考,并组织学生讨论解题方法。
讨论后师生共同评价,主要有两种方法:
①从分数意义入手。求养鹅的只数是鸭的几分之几,也就是求7只是10只的几分之几。把10只看作一个整体,平均分成10份,每份1只,7只就是这个整体的 。
②从倍数关系入手。求养鹅的只数是鸭的几分之几,是以鸭的只数作标准,可以用除法计算,列式为:710=。
(3)比较复习题与例5异同点。
通过比较使学生看到:求一个数是另一个数的几分之几,和求一个数是另一个数的几倍,都用除法计算,都拿作标准的数作除数,得出的商都表示两个数的关系,都不能注单位名称。所不同的是,前面的题是求一个数是另一个数的几倍,得到的商是大于1的数,后面的题是求一个数是另一个数的几分之几,得到的商是小于1的数。
4、练习。教材第92页做一做第1、2题。
四、课堂实践
1.在括号里填上适当的分数。
8厘米=米 146千克=吨 23时=日
41平方分米=平方米 67平方米=公顷 37立方厘米=立方分米
2.五(1)班有女生25人,比男生多4人。
(1)男生占全班人数的几分之几?
(2)女生占全班人数的几分之几?
(3)男生人数是女生人数的几分之几?
五、课堂小结
1、把低级单位名数改写成高级单位名数当得不到整数商时,该如何表示?
2、求一个数是另一个数的几分之几应用题的解答方法是什么?
六、课堂作业
练习十九第4~7题。
七、思考题。
练习十九第8题及思考题。
课题五:分数大小的比较
教学要求 ①使学生掌握分母或分子相同的几个分数大小比较的方法,并能正确比较分数的大小。②应用观察图示边比较边归纳的方法,渗透化归、分类等思想。③培养学生口述算理及归纳概括能力。
教学重点 掌握比较分数大小的方法。
教学用具 投影片(教材例6、例7直观图)
教学过程
一、创设情境
1.教材第93页复习题,请一名学生口答。
2.看图写分数,并比较分数的大小。
0 1
二、揭示课题
以前我们通过对图形的观察,初步学会了最简单的两个分数大小的比较,这节课就来进一步探究分数大小的比较方法。(板书课题)
三、探索研究
1.同分母分数的大小比较。
(1)比较 和 的大小。
出示例6左图,引导学生观察后提问: 和 相比,哪个分数大,哪个分数小?(板书: > )
如果没有直观图,该怎样比较 与 的大小呢?
因为 和 的分母是相同的,它们的分数单位都是 , 是2个 , 是1个 ,2个 比1个 多,所以 > 。
(2)用类似的方法引导学生比较 和 的大小。
(3)观察例6这两组分数,找出它们有什么共同特点?分母相同的两个分数,该怎样比较它们的大小?(请一名学生口答)
板书:分母相同的两个分数,分子大的分数比较大。
2.练习:教材第93页做一做。
3.同分子分数的大小比较。
(1)比较 和 的大小。
①出示直观图,使学生从图上看到:平均分的份数越多,每一份反而越小,所以 大于 。
② 和 的分子相同,表示所取的份数一样多,它们的大小是由分数单位决定的。分母小的分数表示分的份数少,每一份就大,也就是分数单位大;分母大的分数表示分的份数多,每一份就小,也就是分数单位小。所以 大于 。
(2)比较 和 的大小。
用类似的方法进行比较并得出结论: < 。
(3)想一想:上面每组中的两个分数有什么不同的地方?分子相同的两个分数怎样比较大小?
板书:分子相同的两个分数,分母小的分数比较大。
4、练习:教材第95页的做一做。
四、课堂小结
比较两个分数的大小,首先要看清是分母相同还是分子相同。如果分母相同,关键看分子,分子大的分数比较大;如果分子相同,关键看分母,分母小的分数比较大。
五、课堂实践
1.练习二十第1题。
2.练习二十第3题。
六、课堂作业
练习二十第2、4题。
七、思考练习
在括号里填上合适的数
< < < > >
分数乘分数教案篇8
【学习目标】
1、能利用计算法则,正确、迅速地进行分数除法的计算。
2、培养自己的语言表达能力和抽象概括能力。
3、养成良好的计算习惯。
【学习重难点】
1、重点是抽象概括出分数除法的计算法则。
2、难点是利用法则正确、迅速地进行计算,并能解决一些实际问题。
【学习过程】
一、复习
1、列式,说清数量关系。
小明2小时走了6 km,平均每小时走多少千米?____________________________
速度=路程÷时间
2、计算:151×4 ×3 ×2 ×6 971215
8352÷4 ÷3 ÷2 ÷6 9765
二、探索新知
1、阅读例题3主题图及题目,要“比较谁走的快”可以比较他们的什么?如何列式?
2、探究2÷
(1)“2的算法 32小时走了2 km,估一估1小时走多少千米? 3
(2) 动手画线段图表示已知条件与问题的关系。
1小时走的路程,再将线段平均分成3份,其中2份
表示的就是2小时走的路程。 3
(3) 结合线段图,思考:要求小明的速度,第一步可以先算什么?第二步再算什么?
2要怎样计算?它把除法转化成什么?怎样转化? 3
55553、计算例3第二个算式÷,想一想÷可以转化成什么? 612612(4) 结合解题思路,思考2÷
4、通过上面的2道计算题,你发现了什么?你会用自己的方式表示下你发现的规律吗?
______________________________________________________________
三、知识应用:独立完成p31“做一做”的第1、2题。(组长检查核对,提出质疑。)
四、层级训练:巩固训练:练习八第4、5、6题;拓展提高:练习八第7、8、9题。
五、总结梳理: 回顾本节课的学习,说一说你有哪些收获?
学习心得__________( a.我很棒,成功了; b.我的收获很大,但仍需努力。) 自我展示台:(写出你的发现或见解)
会计实习心得体会最新模板相关文章:
★ 百分数教案7篇