想必每个教师在上课之前都会进行教案的书写,教案的制定是为了帮助我们的课堂变得更加生动有趣,以下是会述职范文小编精心为您推荐的初中数学人教版教案5篇,供大家参考。
初中数学人教版教案篇1
学习目标:
1.理解平行线的意义两条直线的两种位置关系;
2.理解并掌握平行公理及其推论的内容;
3.会根据几何语句画图,会用直尺和三角板画平行线;
学习重点:
探索和掌握平行公理及其推论.
学习难点:
对平行线本质属性的理解,用几何语言描述图形的性质
一、学习过程:预习提问
两条直线相交有几个交点?
平面内两条直线的位置关系除相交外,还有哪些呢?
(一)画平行线
1、 工具:直尺、三角板
2、 方法:一"落";二"靠";三"移";四"画"。
3、请你根据此方法练习画平行线:
已知:直线a,点b,点c.
(1)过点b画直线a的平行线,能画几条?
(2)过点c画直线a的平行线,它与过点b的平行线平行吗?
(二)平行公理及推论
1、思考:上图中,①过点b画直线a的平行线,能画 条;
②过点c画直线a的平行线,能画 条;
③你画的直线有什么位置关系? 。
②探索:如图,p是直线ab外一点,cd与ef相交于p.若cd与ab平行,则ef与ab平行吗?为什么?
二、自我检测:
(一)选择题:
1、下列推理正确的是 ( )
a、因为a//d, b//c,所以c//d b、因为a//c, b//d,所以c//d
c、因为a//b, a//c,所以b//c d、因为a//b, d//c,所以a//c
2.在同一平面内有三条直线,若其中有两条且只有两条直线平行,则它们交点的个数为( )
a.0个 b.1个 c.2个 d.3个
(二)填空题:
1、在同一平面内,与已知直线l平行的直线有 条,而经过l外一点,与已知直线l平行的直线有且只有 条。
2、在同一平面内,直线l1与l2满足下列条件,写出其对应的位置关系:
(1)l1与l2 没有公共点,则 l1与l2 ;
(2)l1与l2有且只有一个公共点,则l1与l2 ;
(3)l1与l2有两个公共点,则l1与l2 。
3、在同一平面内,一个角的两边与另一个角的两边分别平行,那么这两个角的大小关系是 。
4、平面内有a 、b、c三条直线,则它们的交点个数可能是 个。
三、cd⊥ab于d,e是bc上一点,ef⊥ab于f,∠1=∠2.试说明∠bdg+∠b=180°。
初中数学人教版教案篇2
教学目标
1笔寡生掌握代数式的值的概念,能用具体数值代替代数式中的字母,求出代数式的值;
2迸嘌学生准确地运算能力,并适当地渗透特殊与一般的辨证关系的思想。
教学重点和难点
重点和难点:正确地求出代数式的值
课堂教学过程设计
一、从学生原有的认识结构提出问题
1庇么数式表示:(投影)
(1)a与b的和的平方;(2)a,b两数的平方和;
(3)a与b的和的50%
2庇糜镅孕鹗龃数式2n+10的意义
3倍杂诘2题中的代数式2n+10,可否编成一道实际问题呢?(在学生回答的基础上,教师打投影)
某学校为了开展体育活动,要添置一批排球,每班配2个,学校另外留10个,如果这个学校共有n个班,总共需多少个排球?
若学校有15个班(即n=15),则添置排球总数为多少个?若有20个班呢?
最后,教师根据学生的回答情况,指出:需要添置排球总数,是随着班数的确定而确定的;当班数n取不同的数值时,代数式2n+10的计算结果也不同,显然,当n=15时,代数式的值是40;当n=20时,代数式的值是50蔽颐墙上面计算的结果40和50,称为代数式2n+10当n=15和n=20时的值闭饩褪潜窘诳挝颐墙要学习研究的内容
二、师生共同研究代数式的值的意义
1庇檬值代替代数式里的字母,按代数式指明的运算,计算后所得的结果,叫做代数式的值
2苯岷仙鲜隼题,提出如下几个问题:
(1)求代数式2x+10的值,必须给出什么条件?
(2)代数式的值是由什么值的确定而确定的?
当教师引导学生说出:“代数式的值是由代数式里字母的取值的确定而确定的”之后,可用图示帮助学生加深印象
然后,教师指出:只要代数式里的字母给定一个确定的值,代数式就有唯一确定的值与它对应
(3)求代数式的值可以分为几步呢?在“代入”这一步,应注意什么呢?
下面教师结合例题来引导学生归纳,概括出上述问题的答案(教师板书例题时,应注意格式规范化)
例1当x=7,y=4,z=0时,求代数式x(2x-y+3z)的值
解:当x=7,y=4,z=0时,
x(2x-y+3z)=7×(2×7-4+3×0)
=7×(14-4)
=70
注意:如果代数式中省略乘号,代入后需添上乘号
例2根据下面a,b的值,求代数式a2-的值
(1)a=4,b=12,(2)a=1,b=1
解:(1)当a=4,b=12时,
a2-=42-=16-3=13;
(2)当a=1,b=1时,
a2-=-=
注意(1)如果字母取值是分数,作乘方运算时要加括号;
(2)注意书写格式,“当……时”的字样不要丢;
(3)代数式里的字母可取不同的值,但是所取的值不应当使代数式或代数式所表示的数量关系失去实际意义,如此例中a不能为零,在代数式2n+10中,n是代数班的个数,n不能取分数最后,请学生总结出求代数值的步骤:①代入数值②计算结果
三、课堂练习
1(1)当x=2时,求代数式x2-1的值;
(2)当x=,y=时,求代数式x(x-y)的值
2钡盿=,b=时,求下列代数式的值:
(1)(a+b)2;(2)(a-b)2
3钡眡=5,y=3时,求代数式的值
答案:1.(1)3;(2);2.(1);(2);3..
四、师生共同小结
首先,请学生回答下面问题:
1北窘诳窝习了哪些内容?
2鼻蟠数式的值应分哪几步?
3痹“代入”这一步应注意什么”
其次,结合学生的回答,教师指出:(1)求代数式的值,就是用数值代替代数式里的字母按照代数式的运算顺序,直接计算后所得的结果就叫做代数式的值;(2)代数式的值是由代数式里字母所取值的确定而确定的.
五、作业
当a=2,b=1,c=3时,求下列代数式的值:(1)c-(c-a)(c-b);
今天的内容就介绍到这里了。
初中数学人教版教案篇3
教学内容
苏教版《义务教育课程规范实验教科书 数学》四年级(下册)第76~77页。
教学目标
1. 使同学通过观察、操作、猜测、验证等活动,认识3的倍数的特征,能够正确地判断一个数是不是3的倍数。
2. 使同学在学习过程中积累数学活动的经验,培养动手实践和观察、分析、笼统、比较、归纳等能力。
3. 使同学在探索3的倍数的特征的过程中,培养合作交流的能力,感受数学学习的乐趣,体悟数学思维的严谨。
教学过程
一、 悬念激趣,启迪猜测
课件出示:南京市上元小学师生为支援西藏墨竹工卡县的贫困学校,首次捐款5844元。
让同学分别判断5844是不是2、5的倍数,并说明理由。
结合同学的回答,板书:2、5的倍数看个位。
师:假如将这些钱平均分给3所贫困学校,不计算能判断每所学校得到的钱数是不是整元数吗?
生:我认为每所学校得到的钱数不是整元数,因为5844的个位是4,不是3的倍数。
师:你猜测什么样的数是3的倍数?
生:我猜测个位上是3、6、9的数是3的倍数。
师:同意他的猜测吗?(同意)
师:他的猜测对不对呢?我们来继续研究。
出示1~99的数表,让同学找出3的倍数。
师:考虑一下这位同学的猜测是否正确?
同学从不同角度举例否定上面的猜测。
师:那请同学们继续观察,3的倍数的个位可以是哪些数字?
生:3的倍数的个位上可以是0~9中任何一个数字。
师:要判断一个数是不是3的倍数,能不能只看个位?(不能)
师:究竟什么样的数才是3的倍数呢?这节课我们就来研究3的倍数的特征。(板书课题)
[研讨:“3的倍数的特征”属于数论的范畴,离同学的生活较远,而2、5的倍数的特征是同学学习这一课的基础。教师从同学的已有基础动身,设计了捐款献爱心的情境,把复习和导入有机结合起来,引导同学进行猜测,设置了“陷阱”;通过让同学观察100以内3的倍数,引导同学从正反两个方面否定了猜测,引发认知抵触,创设了探究的问题情境,激发同学的求知欲望,感受新知的发生过程,明确新课要解决的问题。]
初中数学人教版教案篇4
教学目标:
1、知识与技能:通过对多种实际问题的分析,感受方程作为刻画现实世界有效模型的意义。
2、过程与方法:通过观察,归纳一元一次方程的概念。
3、情感与态度:体验数学与日常生活密切相关,认识到许多实际问题可以用数学方法解决。
教学重点:归纳一元次方程的概念
教学难点:感受方程作为刻画现实世界有效模型的意义.
教学过程:
一、情景导入:
我能猜出你们的年龄,相信吗?
只要任何一个同学回答我一个问题,我就能马上猜到他的年龄是多少岁,我们来试试吧.
问:你的.年龄乘以2加3等于多少?
学生说出结果,教师猜测年龄,并问:你们知道我是怎么做的吗?
学生讨论并回答
二、知识探究:
1、方程的教学(投影演示)
小彬和小明也在进行猜年龄游戏,我们来看一看。
找出这道题中的等量关系,列出方程.
大家观察,这两个式子有什么特点。
讨论并回答:什么是方程?方程有哪些特点?
2、 判断下列式子是不是方程?
(1)x+2=3(是)(2)x+3y=6(是)
(3)3m-6(不是)(4)1+2=3(不是)
(5)x+3>5(不是)(6)y-12=5(是)
三、合作交流
1、如果告诉我们一些实际生活中的问题,大家能够自己列出方程吗?(投影演示)
情景一:小颖种了一株树苗,开始时树苗高为40厘米,栽种后每周树苗长高约15厘米,大约几周后树苗长高到1米?
你能找出题中的等量关系吗?怎样列方程?由此题你们想到了些什么?
情景二:第五次全国人口普查统计数据(20__年3月28日新华社公布)
截至20__年11月1日0时,全国每10万人中具有大学文化程度的人数为3611人,比1990年7月1日0时增长了153.94%
1990年6月底每10万人中约有多少人具有大学文化程度?情景三:西湖中学的体育场的足球场,其周长为200米,长和宽之差为12米,这个足球场的长和宽分别是多少米?
下面是刚才根据几道情景题所列的方程,分析下列方程有何共同点?
2x–5=21
40+15x=100
x(1+153.94﹪)=3611
2[x+(x+12)]=200
2[y+(y–12)]=200
在一个方程中,只含有一个未知数x(元),并且未知数的指数是1(次),这样的方程叫一元一次方程。
问:大家刚才都已经自己列出了方程,那个同学能够说一下你是怎样列出方程的,列方程应该分为那几步呢?
生:分组讨论,回答列方程的步骤(1)找等量关系(2)设未知数(3)列方程
四、随堂练习
1、投影趣味习题,
2、做一做
下面有两道题,请选做一题。
(1)、请根据方程2x+3=21自己设计一道有实际背景的应用题。
(2)、发挥你的想象,用自己的年龄编一道应用题,并列出方程。
五、课堂小节
1、这节课你学到了什么?
2、这节课给你印象最深的是什么?
六、作业:分组布置
数学教案-你今年几岁了搜集整理
初中数学人教版教案篇5
一、教材分析:
青岛版小学四年级上册数学第46—48页的“相遇问题”,是在学习简单行程问题基础上继续学习的内容,情节、数量关系比以前学的内容复杂。教学时,要启发学生抓住题目中主要的数量关系,联系学过的知识,解决新问题。在教学中要紧紧地抓住对“速度”、“相遇时间”、“路程”这三个量之间的相依关系的理解。通过可逆性改编、变化题目中情节,进一步培养学生认真分析数量关系的能力;逆向思维的能力;及综合分析应用题的能力。
在教学中还要帮助学生突破对一些概念的理解。如“速度和”、“相向”、“相遇”、“同时”等。可以通过学生生活实际,通过演示,帮助学生理解这些概念。学生对这些概念理解了,有利于进一步理解题目的情节,并掌握数量之间的关系。 在教学中还要充分发挥准备题的作用,运用旧知识迁移,学会新知识。过去学习过一个物体走完一段路的行程问题,相遇问题是在这个基础上发展的,它的特点是由两个物体同走一段路,抓住新旧知识的联系与区别进行教学,有利于学生对“相遇问题”的理解和掌握。
二、设计理念:
本着以“学生的发展为本”的教育理念,在设计本课教学时,注重了学生的参与,注重了学生思维的开放,注重了学生个性的发展,使教学跟随学生的学习过程,紧贴学生的学习需求,让学生学有所得,学有所获。
三、教学目标:
1.学会分析“相遇问题”的数量关系。
2.掌握“相遇问题”应用题解题思路和解答方法,提高解题能力。 3.培养学生积极动脑,刻苦钻研的学习精神。
教学重点:
理解相遇问题的数量关系,建立解题思路,掌握解题方法。
教学难点:
理解相遇问题中速度和、相遇时间和总路程之间的关系。
教学关键:
使学生弄清每经过一个单位时间,两物体之间的距离变化。
四、教法学法:
为了更好地突出重点,突破难点,本节课我准备采用如下教法:
复习铺垫法 直观演示法分组讨论法启发讲解法练习巩固法 这样通过多种教法的交叉进行,相信一定会取得理想的教学效果。
在学法上引导学生通过观察、思考、讨论的方法掌握知识,学会知识的迁移、类推。
教具准备:计算机及辅助软件
教学过程:
一、展示设疑
1.口答:一架飞机平均每小时飞行600千米,从甲地飞往乙地用了4小时,甲乙两地相距多少千米?
师:谁会用一个数量关系式来回答?能把其它几个关系式也说出来吗?
看来大家对过去的行程问题学得很不错,为自己鼓鼓掌,也对各位和我们一起学习讨论的老师表示欢迎!
这一道题用几个速度和走完全程?
小结:相遇应用题通常有两种解法,第一种先求什么?再求什么?第二种是又先求什么?再求什么?
(板书:速度和×相遇时间=总路程)
四、拓思创新
1.两个邮递员同时从相距3000米的两地相对而行,骑摩托车的速度是800米/分,骑自行车的速度是200米/分。经过几分钟两个邮递员相遇?
这道题与刚才研究过的有什么不一样吗?
2.甲乙两人同时从相距600米的两地相对而行,5分后相遇.甲每分行70米,乙每分行多少米?
3.甲乙两人同时从相距600米的两地相对而行,5分后相遇.乙每分行50米,甲每分行多少米?
这两道题是怎样求一方速度的呢?
根据 路程÷时间=速度和
速度和一方速度=另一方速度
4.小红和小刚同时从两家出发,小红每分钟走38米,小刚每分钟走45米,经过3分钟两人相距100米,小红和小刚家相距多少米?
这道题中的两人相遇了吗?
5.甲乙两人同时从m地相背而行,甲每分行70米,乙每分行50米,5分后他们相距多少米?”
这道题什么发生了变化?你觉得还可以用今天学的方法做吗?
(这是运动的双方方向上发生了变化,可数量关系并没有改变,因此,解题方法完全相同。像这样运动双方某一方面发生变化的譬如时间有先后的变化等等以后我们在研究。)
五、小结:谈谈这节课你又获得了哪些知识?
师:这节课我们研究的都是两个人走路呀、骑车呀这类问题,它还能不能研究其他问题呢?还可能研究哪些问题呢?这些都是值得我们思考的,老师想在下一节课中得到你们的答案。
会计实习心得体会最新模板相关文章:
★ 初中数学教案6篇