会述职范文 >教案大全

小学数学六年级下册数学教案参考5篇

通过教案的规划,教师可以更好地安排教学内容和时间分配,出色的教案帮助教师发现教学中的改进点和不足之处,从而提高教学质量,下面是会述职范文小编为您分享的小学数学六年级下册数学教案参考5篇,感谢您的参阅。

小学数学六年级下册数学教案参考5篇

小学数学六年级下册数学教案篇1

第一课时 负数

?教学目标】

1.在熟悉的生活情境中初步认识负数,能正确地读写正数和负数,知道0既不是正数也不是负数。

2.初步学会用负数表示一些日常生活中的实际问题。3.能借助数轴初步理解正数、0和负数之间的关系。【重点难点】

负数的意义和数轴的意义及画法。

?教学指导】

1.通过丰富多彩的生活情境,加深学生对负数的认识。负数的出现,是生活中表示两种相反意义的量的需要。教学时,教师应通过丰富多彩的生活实例,特别是学生感兴趣的一些素材来唤起学生已有的生活经验,激发学生的学习兴趣,在具体情境中感受出现负数的必要性,并通过两种相反意义的量的对比,初步建立负数的概念。在引入负数以后,教师要鼓励学生举出生活中用正负数表示两种相反意义的量的实际例子,培养学生用数学的眼光观察生活,并通过大量的事例加深对负数的认识,感受数学在实际生活中的广泛应用。

2.把握好教学要求。

对负数的教学要把握好要求,作为中学进一步学习有理数的过渡,小学阶段只要求学生初步认识负数,能在具体的情境中理解负数的意义,初步建立负数的概念。这里不出现正负数的数学定义,而是描述什么样的数是正数,什么样的数是负数,只要求学生能辨认正负数。关于数轴的认识,这里还没有出现严格的数学定义,而是描述性的定义,只是让学生借助已有的在直线上表示正数和0的经验,迁移类推到负数,能在数轴上表示出正数、0和负数所对应的点。

3.培养学生多角度观察问题,解决问题的能力。

教材创设了开放性的思维空间,在解决问题时应着眼于让学生自主地理解数学信息、寻找解题思路。教师要有意识地引导学生从不同角度寻找答案,对于学生有道理的阐述,教师要积极鼓励,激发学生求知的欲望,逐步增强学生学好数学的内驱力。【课时安排】 建议共分3课时:

负数的初步认识 2课时 在数轴上表示正数、0和负数 1课时 【知识结构】

第1课时 负数的初步认识(1)

?教学内容】 负数的初步认识

(1)(教材第2页例1)。【教学目标】

结合生活实例,引导学生初步理解正、负数可以表示两种相反意义的量。

?重点难点】 体会负数的重要性。【教学准备】 多媒体课件。

?情景导入】

1.教师利用课件向学生展示教材第2页主题图。(有条件的可播放天气预报视频)

2.引导学生观察图片,说出图中内容。(教师:观察上图,你能发现什么?0℃代表什么意思?-3℃和3℃各代表什么意思?)

引出课题并板书:负数的初步认识(1)【新课讲授】 教学教材第2页例1。

(1)教师板书关键数据:0℃。(2)教师讲解0℃的意思。0℃表示淡水开始结冰的温度。比0℃低的温度叫零下温度,通常在数字前加“-”(负号):如-3℃表示零下3摄氏度,读作负三摄氏度。比0℃高的温度叫零上温度,在数字前加“+”(正号),一般情况下可省略不写:如+3℃表示零上3摄氏度,读作正三摄氏度,也可以写成3℃,读作三摄氏度。

(3)我们来看一下课本上的图,你知道北京的气温吗?最高气温和最低气温都是多少呢?随机点同学回答。

(4)刚刚同学回答得很对,读法也很正确。

(5)了解了北京的气温,下面我想请同学告诉我哈尔滨的气温,它与上海气温比较又怎样呢?用手势告诉大家好吗?

学生讨论合作,交流反馈。

(6)请同学们把图上其它各地的温度都写出来,并读一读。(7)教师展示学生不同的表示方法。

(8)小结:通过刚才的学习,我们用“+”和“-”就能准确地表示零上温度和零下温度。

?课堂作业】

完成教材第4页的“做一做”第1题。组织学生独立完成,指名回答。答案:-18℃温度低。【课堂小结】

通过这节课的学习,你有什么收获? 【课后作业】

完成练习册中本课时的练习。

第1课时 负数的初步认识(1)

0℃-3℃ 3℃(+3℃)

第2课时 负数的初步认识(2)

?教学内容】 负数的初步认识

(2)(教材第3页例2)。【教学目标】

通过呈现存折上的明确数据,让学生体会负数在生活中的广泛应用,进一步体会负数的含义。

?重点难点】

体会引入负数的必要性,初步理解负数的含义。

?情景导入】

教师:上一节课我们已经一起学习了气温的表示,谁能说一说温度都是怎样读写的?

组织学生讨论回忆上一课内容。

师:很好,大家都很棒。今天我们继续学习负数知识。引出课题并板书:负数的初步认识(2)【新课讲授】 1.教学例2。

(1)教师出示存折明细示意图。(教材第3页的主题图)教师:同学们能说说“支出(-)或(+)”这一栏的数各表示什么意义吗?组织学生分组讨论、交流,然后指名汇报。

(2)引导学生归纳总结:像2000,500这样的数表示的是存入的钱数;而前面有“-”号的数,像-500,-132这样的数表示的是支出的钱数。

(3)教师:上述数据中500和-500意义相同吗?(500和-500意义相反,一个是存入,一个是支出)。你能用刚才的方法快速而又准确地表示出向东走100m和向西走200m、前进20步和后退25步吗?说说你是怎么表示的?师把学生的表示结果一一板书在黑板上。

2.归纳正数和负数。

(1)你能把黑板上板书的这些数进行分类吗?小组讨论交流。(2)教师展示分类的结果,适时讲解。像+8,+4,+2000,+500,+100,+20这样的数,我们把它们叫做正数,前面的+号也可

以省略不写。像-8,-4,-500,-20这样的数,我们把它叫做负数。

(3)那么0应该归为哪一类呢?组织学生讨论,相互发表意见。师设难:“我认为0应该归为正数一类。”

归纳:0既不是正数也不是负数,它是正数和负数的分界点。(4)你在什么地方见过负数?教师鼓励学生注意联系实际举出更多的例子。

?课堂作业】

完成教材第4页的“做一做”第2题。组织学生动手填一填,在小组中交流检查。答案: 正数有:+4+41 51负数有:-?

3【课堂小结】

通过这节课的学习,你有什么收获? 【课后作业】

完成练习册中本课时的练习。

第2课时 负数的初步认识(2)

正数:+8 负数:-8

+4-4 +2000-2000 +500-500 +100-100 +20-20 0既不是正数也不是负数。

第3课时 在数轴上表示正数、0和负数

?教学内容】

借助数轴理解正数和负数的意义(教材第5页例3)。【教学目标】

1.借助数轴初步理解正数、0、负数。

2.初步体会数轴上数的顺序,完成对数的结构的初步构建以及正数与负数的比较。

?重点难点】 认识数轴、0。

?情景导入】

教师用cai课件演示教材第5页的主题图。

教师:如何在一条直线上表示出他们运动后的情况呢? 【新课讲授】 教学例3。

(1)教师:怎样用数来表示这些学生和大树的相对位置关系呢?

组织学生在小组中议一议,然后汇报。

(2)教师结合学生的汇报,用课件出示数轴,在相应点的下方标出对应的数。

(3)让学生说出直线上其他几个点代表的数,让学生对数轴上的点表示的正负数形成相对完整的认识。

(4)教师总结:我们可以在直线上表示出正数、0、负数,像这样的直线我们叫做数轴。

(5)引导学生观察数轴

:①从0起往右依次是?从0起往左依次是?你发现什么规律?

②在数轴上分别找到

和-对应的点。如果从起点分别到和-处,应如何运动?

师及时小结,数轴除了可以表示整数,还可以表示小数、分数。每个数都能在数轴上找到它们相对应的点。

?课堂作业】

1.完成教材第5页的“做一做”。学生独立练习,指名汇报。2.完成教材第6页练习一的第4题。第4题组织学生独立完成,并在小组中相互交流、检查。教师用课件出示答案、订正。

答案: 1.略

2.第4题:点a表示的数是-7;点b表示的数是-4;点c表示的数是-1;点d表示的数是3;点e表示的数是6。

?课堂小结】

通过这节课的学习,你有什么收获? 【课后作业】

完成练习册中本课时的练习。

第3课时 在数轴上表示正数、0和负数

上面这样的直线叫做数轴。

2百分数

(二)【教学目标】

1.理解折扣、成数、税率、利率的含义,知道它们在生活中的简单应用,会进行这方面的简单计算。

2.在理解、分析数量关系的基础上,使学生能正确地回答有关百分数的问题。

?重点难点】

利用百分数解决实际问题。

?教学指导】

注意概念之间的联系与区别,以提高学生解决问题的能力。本单元的概念较多,教学时要突出重点,帮助学生弄清概念间的联系与区别。只有理解了百分数的含义,才能正确地运用它解决百分率、折扣、成数、税率、利率等实际问题。再如,百分数和分数虽然在本质上是相同的,但在意义上还是有一定的区别的:百分数表示两个数之间的关系;分数既可以表示一个具体的数、又可以表示两个数之间的关系。

?课时安排】

建议共分5课时:折扣1课时 成数1课时 税率1课时 利率

1课时 解决问题1课时

?知识结构】

第1课时 折扣

?教学内容】

折扣(教材第8页的内容,练习二第1~3题)。【教学目标】 1.明确折扣的含义。

2.能熟练地把折扣写成分数、百分数。3.正确解答有关折扣的实际问题。

4.学会合理、灵活地选择方法,锻炼运用数学知识解决实际问题的能力。

?重点难点】

1.会解答有关折扣的实际问题。

2.合理、灵活地选择方法,解答有关折扣的实际问题。【教学准备】 多媒体课件。

?情景导入】

圣诞节期间各商家搞了哪些促销活动?谁来说说他们是怎样进行促销的?(学生汇报调查情况。)

?新课讲授】

1.教学折扣的含义,会把折扣改写成百分数。

(1)刚才大家调查到的打折是商家常用的手段,是一个商业用语,那么你所调查到的打折是什么意思呢?比如说打“七折”,你怎么理解?

(2)你们举的例子都很好,老师也搜集到某商场打七折的售价标签。(电脑显示)

①大衣,原价:1000元,现价:700元。②围巾,原价:100元,现价:70元。③铅笔盒,原价:10元,现价:? ④橡皮,原价:1元,现价:?

(3)动脑筋想一想:如果原价是10元的铅笔盒,打七折,猜一猜现价会是多少?如果原价是1元的橡皮,打七折,现价又是多少?

(4)仔细观察,商品在打七折时,原价与现价有一个什么样的关系?带着这样的问题,可以利用计算器,也可以借助课本,四人小组一起试着找到答案。

(5)讨论,找规律。

a.学生动手操作、计算,并在计算或讨论中发现规律。b.学生汇报寻找的方法:利用计算器,原价乘以70%恰好是标签的售价或现价除以原价大约都是70%;或查书等等。

(6)归纳,得定义。

a.通过小组讨论,谁能说说打七折是什么意思?打八折是什么意思?打八五折呢?

b.概括地讲,打折是什么意思?如果用分母是十的分数,该怎样表示?(“几折”就是十分之几,也就是百分之几十)

c.通俗来讲,商店有时降价出售商品,叫做打折扣销售,通称“打折”。几折就是十分之几,也就是百分之几十。如八五折就是85%,九折就是90%。一般情况下,不把折扣写成十分之几这样的分数形式,写成分数时,有时会出现小数(例如八五折就会写成),不便于计算和理解。10(7)练习。

①四折是十分之(),改写成百分数是()。②六折是十分之(),改写成百分数是()。③七五折是十分之(),改写成百分数是()。④九二折是十分之(),改写成百分数是()。2.运用折扣含义解决实际问题。

出示问题(1):爸爸给小雨买了一辆自行车,原价180元,现在商店打八五折出售。买这辆车用了多少钱?

① 导学生分析题意:打八五折怎么理解?是以谁为单位“1”?

② 找出数量关系式。

先让学生找出单位“1”,然后再找出数量关系式: 原价×85%=实际售价

③ 学生独立根据数量关系式,列式解答。

④全班交流。根据学生的汇报,板书:180×85%=153(元)答:买这辆车用了153元。

出示问题(2):爸爸买了一个随身听,原价160元,现在只花了九折的钱,比原价便宜了多少钱?

① 导学生理解题意:只花了九折的钱怎么理解?以谁为单位“1”?

② 学生试算,独立列式。③全班交流。根据学生的汇报,板书: 第一种算法:原价160元,减去现价,就是比原价便宜多少钱。

160-160×90% =160-144 =16(元)

第二种算法:原价160元,现价比原价便宜了(1-90%)。160×(1-90%)=160×10% =16(元)

重点引导学生理解第二种算法,知道现价比原价便宜了10%。3.典例讲析。

在某商店促销活动时,原价800元的某品牌自行车九折出售,最后剩下的几辆车,商家再次打八折出售,最后的几辆车售价多少元?分析:原价800元,第一次打九折出售,价格是原价的90%,再次打八折出售,价格是第一次打九折后的80%。可以先求出第一次打折后的价格,再求出第二次打折后的价格,即为现在的售价。

解:800×90%×80%=720×80%=576(元)答:最后的几辆车售价是576元。【课堂作业】

1.(1)爸爸买了一个剃须刀,原价240元,现在只花了八折的钱,比原价便宜了多少钱?

a.打八折怎么理解?是以谁为单位“1”? b.学生试做,讲评。(2)判断:

①商品打折扣都是以原商品价格为单位“1”,即标准量。()②一件上衣现在打八折出售,就是说比原价降低10%。()2.完成教材第8页“做一做”练习题。3.完成教材第13页练习二第1~3题。

说明:第1题是一道开放题,有多种可能,应注意给学生提供交流自己想法的机会。练习后可指出“五折”也可以说成“半价”,丰富学生的生活经验。

第2题,要注意指导学生理解元表示的实际含义,它与八折有什么关系。使学生明确元就是打折后比原价少的钱数,它相当于原价的1—80%,在此基础上让学生列出方程或算式。

答案:1.(1)240-240×80%=48(元)(2)① √ ② ×

2.第8页“做一做”:52 3.练习二第1题:

(1)×50%=(元)×50%=(元)1×50%=(元)3×50%=(元)

(2)(此题答案不唯一)可以买一种面包,也可以两种或两种以上合买。单独买各种打折后的面包:

①3÷=4(个)合买各种打折后的面包: ②3÷=6(个)33÷=2(个)○④3÷=2(个)??(元),再买1个打折后元的面包。

⑤可以买3个元的面包,买2个元的面包。可以买1个元的面包,买2个元的面包??第3题:分析:按原价的八折买,优惠价占二折,元占原价的20%,求出原价,用除法计算。解答:÷20%=48(元)【课堂小结】

通过这节课的学习你有什么收获? 【课后作业】

完成练习册中本课时的练习。

第1课时 折扣

八五折180×85%=153(元)

九折160×(1-90%)=160×10%=16(元)

总结: 解决与折扣有关的实际问题实质上是求一个数的百分之几是多少和已知一个数的百分之几是多少求这个数的问题。在分析折扣时,不要把打折后的价格当作定价,正确区分定价、进价和售价是解决折扣问题的关键。

第2课时 成数

?教学内容】

成数(教材第9页内容)。【教学目标】 1.明确成数的含义。

2.能熟练的把成数写成分数、百分数。3.正确解答有关成数的实际问题。【重点难点】 1.成数的理解。2.成数的计算。【教学准备】 多媒体课件。

?情景导入】

农业收成,经常用“成数”来表示。例如,报纸上写道:“今年我省油菜籽比去年增产二成”??

教师:同学们有留意到类似的新闻报道吗?(学生汇报相关报导)

?新课讲授】

1.介绍成数的含义,会把成数改写成分数,百分数。(成数:表示一个数是另一个数的十分之几,通称“几成”)(1)刚才大家都说了很多有成数的发展变化情况,那么这些“成数”是什么意思呢?比如说,增产“二成”,你怎么理解?

(学生讨论并回答)教师板书:

成数 分数 百分数 二成 十分之二 20%(2)试说说以下成数表示什么?

①出口汽车总量比去年增加三成。这里的“三成”表示什么? ②北京出游人数比去年增加两成。这里的两成表示什么? 引导学生讨论并回答。

2.运用成数的含义解决实际问题。

(1)出示教材第9页例2:某工厂去年用电350万千瓦时,今年比去年节电二成五,今年用电多少万千瓦时?

(2)分析题目,理解题意:

①今年比去年节电二成五怎么理解?是以哪个量为单位“1”?

②找出数量关系式。

先让学生找出单位“1”,然后再找出数量关系式: 今年的用电量=去年的用电量×(1-25%)③学生独立根据关系式,列式解答。④全班交流。

方法一:350×(1-25%)=350×75%=350×=(万千瓦时)方法二:350×(1-25%)=350×75%=350×75/100=(万千瓦时)

?课堂作业】

完成教材第9页“做一做”。

答案:÷(1+20%)=÷=(人)【课堂小结】

这节课我们一起学习了有关成数的知识,你们对成数的知识有哪些了解?

?课后作业】

完成练习册中本课时的练习。

第2课时 成数

第3课时 税率

?教学内容】

税率(教材第10页有关纳税的内容,练习二第6、7题)。【教学目标】

1.使学生知道纳税的含义和重要意义,知道应纳税额和税率的含义,以根据具体的税率计算税款。

2.在计算税款的过程中,加深学生对社会现象的理解,提高

学生解决问题的能力。

3.增强学生的法制意识,使学生知道每个公民都有依法纳税的义务。

?重点难点】 1.税额的计算。2.税率的理解。【教学准备】 多媒体课件。

?情景导入】 1.口答算式。

(1)100的5%是多少?(2)50吨的10%是多少?(3)1000元的8%是多少?(4)50万元的20%是多少? 2.什么是比率? 【新课讲授】

1.阅读教材第10页有关纳税的内容。说说:什么是纳税? 2.税率的认识。

(1)说明:纳税的种类很多,应纳税额的计算方法也不一样。应纳税额与各种收入的比率叫做税率,一般是由国家根据不同纳税种类定出不同的税率。

(2)试说说以下税率表示什么。a.商店按营业额的5%缴纳个人所得税。这里的5%表示什么?b.某人彩票中奖后,按奖金的20%缴纳个人所得税。这里的20%表示什么? 3.税款计算。

(1)出示例3:一家饭店十月份的营业额约是30万元。如果按营业额的5%缴纳营业税,这家饭店十月份应缴纳营业税约多少万元?

(2)分析题目,理解题意。引导学生理解“按营业额的5%缴纳营业税”的含义,明确这里的5%是营业税与营业额比较的结果,也就是缴纳的营业税占营业额的5%,题中“十月份的营业额是30万元”,因此十月份应缴纳的营业税就是30万元的5%。

(3)学生列出算式。

求一个数的百分之几是多少,用乘法计算。列式:30×5%(4)学生尝试计算。(5)汇报交流。

30×5%这个算式有两种计算方法。

方法1:把百分数化成分数来计算。30×5%=30×元)

方法2:把百分数化成小数来计算。30×5%=30×=(万元)

?课堂作业】

1.巩固练习:教材第10页“做一做”。2.完成教材第14页练习二第6题。答案:

1.(5000-3500)×3%=45(元)×3%=9(元)【课堂小结】

这节课我们一起学习了有关纳税的知识,你们对纳税的知识有哪些了解?

?课后作业】

1.完成练习册中本课时的练习。2.教材第14页第7题。

第3课时 税率

应纳税额=收入额×税率收入额=应纳税额÷税率税率=应纳税额÷收入额×100%30×5%=(万元)

5=(万100答:10月份应缴纳营业税约 万元。

第4课时 利率

?教学内容】

利率(教材第11页有关利率的内容)。【教学目标】

1.通过教学使学生知道储蓄的意义;明确本金、利息和利率的含义;掌握计算利息的方法,会进行简单计算。

2.对学生进行勤俭节约,积极参加储蓄以及支援国家、灾区、贫困地区建设的思想品德教育。

?重点难点】

1.掌握利息的计算方法。

2.正确地计算利息,解决利息计算的实际问题。【教学准备】 多媒体课件。

?情景导入】

随着改革开放,社会经济不断发展,人民收入增加,人们可以把暂时不用的钱存入银行,储蓄起来。这样一来可以支援国家建设,二来对个人也有好处,既安全、有计划,同时又得到利息,增加收入。那么,怎样计算利息呢?这就是我们今天要学的内容。

?新课讲授】

1.介绍存款的种类、形式。

存款分为活期、整存整取和零存整取等方式。

2.阅读教材第11页的内容,自学讨论例4,理解本金、利息、税后利息和利率的含义。(例如:王奶奶2012年月8月1日把5000元钱存入银行,整存整取两年,到2013年8月1日,王奶奶不仅可以取回存入的5000元,还可以得到银行多付给的150元,共5150元。)(注:这里不考虑利息税)

本金:存入银行的钱叫做本金。王奶奶存入的5000元就是本金。

利息:取款时银行多支付的钱叫做利息。利率:利息和本金的比值叫做利率。

(1)利率由银行规定,根据国家的经济发展情况,利率有时会有所调整,利率有按月计算的,也有按年计算的。

(2)阅读教材第11页表格,了解同一时期各银行的利率是一定的。

3.学会填写存款凭条。

把存款凭条画在黑板上,请学生尝试填写。然后评讲。(要填写的项目:户名、存期、存入金额、存种、密码、地址等,最后填上日期。)

4.利息的计算。

(1)出示利息的计算公式: 利息=本金×利率×时间(2)计算方法:

若按照2012年7月的银行利率,如果王奶奶的5000元钱整存整取,两年到期的利息是多少?学生计算后交流,教师板书:5000×%×2=375(元)加上王奶奶存入的本金5000元,到期时她能得到本金和利息,一共5375元。

?课堂作业】

本题是有关“打折”和“纳税”的问题,是百分数的具体应用,在练习时应让学生说说自己每一步计算的意义,并进行集体订正。

?课堂小结】

通过本节课的学习,你学会了什么?什么叫本金?什么叫利息?什么叫利率?如何计算利息?

?课后作业】

1.完成练习册中本课时的练习。2.教材第14页第9题。

第4课时 利率 利息=本金×利率×时间

任何一种存款,在计算利息时,都要乘以存入的时间,如果存款的利率是年利率,计算时所乘时间单位应是年,如果存款的利率是月利率,计算时所乘时间单位应是月,不要一律按年计算。

第5课时 解决问题

?教学内容】

用百分数解决问题。(教材第12页例5)【教学目标】

1.熟练地掌握百分数应用题的数量关系,并能解决问题。2.培养学生良好的学习习惯。【重点难点】

认真审题,用百分数解决实际问题。【教学准备】 多媒体课件。

?复习导入】

前面我们已经学习了折扣、成数、税率、利率等百分数在生活中的具体应用,今天我们一起来学习它们更多的应用,学习新知识之前,我们来回忆下之前的内容。

口头列式。

(1)妈妈想买一件原价500元的裙子,五折之后这条裙子多少钱?

(2)爸爸这个月工资由原来的6000元涨了一成五,爸爸现在工资是多少?

(3)爸爸的月工资是6000,扣除3500个人免税征额后的部分需要按3%的税率缴纳个人所得税,他应缴个人所得税多少元?

(4)小云将压岁钱1000元存入银行,存期为3年,年利率为%。到期支取时,小云一共能取回多少钱?

师:这几道题分别属于什么类型的应用题? 学生交流,汇报。【新课讲授】 教学例5。

1.学生读题,明确已知条件及问题,尝试说说自己的解题思路。

2.利用提问,引导学生思考回答,归纳出解题思路。教师:“满100元减50元”是什么意思?

引导回答:就是在总价中取整百元部分,每个100元减去50元。不满100元的零头部分不优惠。

解题思路:

(1)在a商场买,直接用总价乘以50%就能算出实际花费。(2)在b商场买,先看总价中有几个100,230里有两个100,然后从总价里减去2个50元。

3.学生独立列出算式后,让他们计算并给出结果。板书:a:230×50%=115(元)b:230-2×50=130(元)a

提问:通过计算,我们知道了a商场更省钱,在什么时候两个商场价格差不多呢?

反思:看起来满100减50元不如打五折实惠。如果总价能凑成整百多一点就差不多了。

?课堂作业】

完成教材第12页“做一做”。学生独立完成,教师讲解。答案:a商场:120-40=80(元)b:120×60%=72(元)b商场更省钱。【课堂小结】

通过这节课,你有什么收获,你将如何运用到生活中呢? 【课后作业】

完成练习册中本课时的练习。

第5课时 解决问题

a商场:230×50%=115(元)b商场:230-50×2=130(元)115

小学数学六年级下册数学教案篇2

教学目标知识目标:

理解比例的意义,认识比例各部分的名称。

能力目标:

能运用比例的意义判断两个比能否组成比例,并会组比例。

情感目标:

感受数学的奥秘,培养数学兴趣。

教学重、难点教学

重点:理解比例的意义。

教学难点:能根据比例的意义写比例.

突破重点、难点设想根据上学期“比的认识”,怎样的两张图片像的问题、让学生明确两种相关联的量成相除关系,且它们的比值相等时,这两个比组成比例关系。

教学媒体多媒体课件、小黑板

教学活动及主要语言预设学生活动预设

一、创境激疑

上学期学习“比的'认识”时,我们讨论“图片像不像”的问题。请同学们联系比的知识,再想一想,怎样的两张图片像?(比值相等)这节课我们就一起来深入探究。

回顾

产生疑问

二、互动解疑

1、比例的意义

在情境中感受两种相关联的量之间的变化规律。要求小组合作的形式完成,提出要求。

(1)写出每个图片的长与宽的比

(2)求出各比的比值

(3)观察特点,写出规律

板书:

图片a:6:4=3:2=1.5

图片b:3:2=1.5

图片c:8:3=2.66……

图片d:12:8=3:2=1.5

图片e:12:2=6

比值相等的两个比用“=”连接起来,这种等式叫做比例,今天我们一起来探讨比例的相关知识,板书课题。

结论:像12:6=8:4, 6:4=3:2这样表示两个比值相等的式子叫做比例。

巩固练习:

(1)要求每个学生写出一个比例,教师巡视指导且批阅。

(2)要求每个学生写出一个比例,同桌交流。

(3)做一做教材表格的题,完成后由教师批改。

2、认识比例各部分名称

组成比例的四个数叫做比例的项。在12:6=8:4中,12,6,8和4都是该比例的项。

在比例中,两端的两项叫做比例的外项,中间的两项叫做比例的内项。

例如:12:6=8:4中12和4是比例6和8是比例

观察

先独立思考

指名汇报

共同发现、小结

理解

自主思考

小组内交流探究

汇报交流

独立填写

同桌交流

指名汇报

三、启思导疑

1、同学们发现了一种新的判断两个比是否成比例的方法?(比值相等)

2、这节课我们一直类比着比学习比例,比与比例仅一字只差,它们会有什么区别呢? (比是两个数相除,是一个算式;比例是两个比相等,是一个等式)

指名谈发现

理解

识记

四、实践运用

(一)填一填。

1、在4:7=48:84中,4,7,48,84,叫比例的( ),其中4和84是比例的。7和48是比例的。

2、用6,3,9,8组成一个比例是( )。

(二)下列那几组的两个比可以组成比例?为什么?

(1)4:5和8:20

(2)15:30和18:36

(3)0.7:4.9和140:20

(4)1/3:1/9和1/6:1/8

(三)按要求写一写。

1、先写出比值是3的两个比,再组成比例。

2、根据1.2×25=0.6×25写出两个比例式。

独立思考

指名汇报

评价订正

五、总结评价

这节课我们学习了什么,你有什么收获?什么样的两个量成正比例关系?

自由小结

板书设计:比例的认识

12:6 = 8:4

6:4 = 3:2

小学数学六年级下册数学教案篇3

教学内容

教科书第80~81页,练习十六的习题.

教学目的

1.使学生掌握整除、约数和倍数、质数和合数等概念,知道它们之间的联系和区别.掌握能被2、5、3整除的数的特征.会分解质因数.会求最大公约数和最小公倍数.

2.使学生在理解的基础上掌握分数、小数的基本性质.

教学过程

一、数的整除

1.整除的意义.

教师:想一想,什么叫做整除?指名回答.

教师进一步强调:整除中说的数是什么数?(整数.)

商是什么数?(整数.)有没有余数?(没有余数.)

教师:什么叫做除尽?(两数相除,余数是0.)

整除和除尽有什么联系和区别?指名回答.教师根据学生的回答,整理出下表:

被除数 除数 商 余数

整除 整数 不等于o的整数 整数 o

除尽 数 不等于o的数 数 o

教师:可以看出整除是除尽的一种特殊情况.

2.能被2、5、3整除的数的特征.

教师:我们已经学过能被2、5、3整除的数的特征,同学们还记得吗?指名说一说.然后提问:

能被2、5整除的数,在判别方法上有什么共同的地方?(都根据个位数进行判别.)

能被3整除的数,在判别方法上与能被2、5整除的数有什么不同?气根据各个数位上的`数之和进行判别.)

教师:什么叫做奇数?什么叫做偶数?

根据什么来判断一个数是奇数还是偶数?

3.约数和倍数.

教师:根据整除的概念可以得到约数和倍数的概念.什么叫做约数?什么叫做倍数?指名说一说.(如果a能被b整除,a就叫做b的倍数,b就叫做a的约数.)为了使学生进一步明确约数和倍数是相互依存的,教师可以接着提问:

能说6是约数,15是倍数吗?应该怎么说?

教师说明:在研究约数和倍数时,我们所说的数一般只指自然数,不包括0.

教师:一个数的约数的个数是怎样的?(有限的.)

其中最小的约数是什么数?最大的约数是什么数?(1,这个数本身.)

一个数的倍数的个数是怎样的?(无限的.)

其中最小的倍数是什么数?(这个数本身.)

做练习十六的第2题.让学生直接做在书上.教师可以说明做的方法:在含有约数2的数下面写2,在3的倍数下面写3,在能被5整除的数下面写5,然后再进行判断.集体订正.

4.质数和合数.教师指名说一说质数、合数的概念.可有意识地让学习有困难的学生说,其他同学进行补充.

教师:怎样判断一个数是质数还是合数?(检查这个数有约数的个数,或查质数表.)指名说一说30以内有哪些质数.

让学生进行判断:一个自然数如果不是质数,那么一定是合数.学生判断后,教师说明:1既不是质数,也不是合数.

5.分解质因数.

指名说一说质因数、分解质因数的含义.

做练习十六的第5题.学生独立解答,教师巡视,集体订正.

6.公约数、最大公约数和公倍数、最小公倍数.

(1)复习概念.

教师:什么叫做公约数?什么叫做最大公约数?(几个数公有的约数,叫做这几个数的公约数;其中最大的一个叫做这几个数的最大公约数.)怎样求几个数的最大公约数?让学生举例说明.

什么叫做公倍数?什么叫做最小公倍数?怎样求几个数的最小公倍数?让学生举例说明.

教师:什么样的数叫做互质数?(公约数只有1的两个数叫做互质数.)

质数和互质数有什么区别?(质数是一个数,只有1和它本身两个约数;互质数是两个数,只有公约数1.)

两个不同的质数一定互质吗?(两个不同的质数一定互质.)

互质的两个数一定都是质数吗?(不一定,如4和9互质,4、9都是合数.)

(2)课堂练习.

做练习十六的第1题.先让学生独立判断,集体订正时,让学生说一说判断的理由.

做练习十六的第4题.学生独立解答,教师巡视,集体订正.教师根据前面的教学,整理出教科书第80页的概念联系图.也可以把该图变化成如下形式.

小学数学六年级下册数学教案篇4

教学目标:

1、通过观察、操作、体会比例尺产生的必要性和按相同的比扩大或缩小的实际意义。

2、通过图形的放缩,结合具体情境,感受图形的相似。

教学过程:

活动一、创设情境

同学们做了一张贺卡,准备母亲节的时候送给妈妈们,这张贺卡长是6厘米,宽是4厘米。笑笑、淘气、小斌分别在方格纸上画了贺卡的示意图,现在请同学们观察谁画的像。

1、出示图。

2、观察图,同桌互相交流。

3、汇报。

4、小组讨论:为什么同样大小的贺卡,却画出大小不同的长方形,而且有的像有的不像呢?他们是怎么画的?

5、小组汇报

笑笑:我画的图,宽1厘米相当于实际的4厘米,长1.5厘米相当于实际的6厘米。

淘气:卡片的长和宽的比是6:4、也就是3:2,所以,我画的图长和宽的比也是3:2。

小斌:只要长比宽长一些就行。

6、画的图的长和宽与原来的长和宽有什么关系?

得出:只要长和宽都按相同的比(可以有两个意思,一是图中的长与实际的长的比和图中的宽与实际的宽的比相等,二是图中的长和宽的比与实际的长和宽的比相等)来画,画的图才像。长方形画成较小的长方形,首先可以量出原来的长和宽,再将它们的长和宽缩小相同的倍数,才能画的像。

活动二、画一画

把下面的图放大,比一比谁画得像。

1、理解题意。

2、学生独立完成。

3、小组内交流。

4、汇报,全班交流。

活动三、探究活动

1、学生独立完成。

2、小组交流,汇报。

小学数学六年级下册数学教案篇5

教学目标

1.使学生掌握分数、小数四则混合运算的运算顺序及计算方法,并能正确地进行计算。

2.训练学生认真审题,能够选择合理简便的解题方法。

3.培养学生良好的学习习惯及正确、合理、灵活、迅速的运算能力。

教学重点和难点

教学重点:掌握分数、小数四则混合运算的运算顺序,并且能根据不同的情况选用不同的方法进行计算。

教学难点:灵活、合理地运用不同的方法进行计算。

教学过程设计

(一)复习

1.第74页第1题。

(1)把下面的小数化成分数:

0.125 0.3 0.5 0.6 0.25 0.75

(2)把下面的分数化成小数:

以上各题用投影片出示,指名口答。

2.我们已经知道,分数、小数加减混合运算,可以根据已知数的具体情况来确定是先把分数化成小数,还是先把小数化成分数,从而进行计算。

下面各题用什么方法进行计算比较简单?

提问:分数、小数加减混合运算一般情况下化成什么数做比较简便?为什么?

提问:分数和小数乘、除混合运算在一般情况下,化成什么数做比较简便?为什么?(第三种方法最简便,但这种做法只有小数能够被分数的分母除尽时才最方便,一般情况下分数、小数乘除混合运算把小数化成分数来做比较简便。)

(二)学习新课

以上这些计算方法是我们进行分数、小数四则混合运算的基本方法。

(板书课题:分数、小数四则混合运算)

(1)小组讨论:这道题怎样计算比较简便?(把小数化成分数计算比较简便。)

(2)全体同学在练习本上试做,通过试做,体会一下为什么用这种方法进行计算简便?

(3)订正,并且说说这种做法有什么好处?(因为计算分数乘、除法时,有时可以先约分再计算比较简便,所以,分数、小数乘除混合运算一般先把小数化成分数后再计算。)

(1)审题:例5与例4有什么不同之处?

(例4是分数、小数乘、除混合运算,例5是分数,小数四则混合运算。)

(2)想一想,做这道题的时候,我们应该注意些什么?(a.运算顺序;b.选择合理恰当的方法。)

(3)小组讨论:这道题是把小数化成分数算简便,还是把分数化成小数算简便?(把小数化成分数计算比较简便。)

(4)全体同学在练习本上试做。

(5)订正。

(6)小结:我们把题目中的小数都化成了分数,这样在乘除过程中,有时可以先约分,使得做起来比较简便,同时得到的是一个准确的结果。

(7)如果计算的结果允许取近似值,也可以先把分数化成小数,取它们的近似值进行计算。在本册教材中,一般要求只取两位小数,这种算法在现在电子计算机越来越被广泛使用的社会里是很有价值的,因为,大多数电子计算机都是用小数来计算的。请你用这种方法试做这道题:

≈5.2÷3.2-1.67×0.7(注意:这一步用“≈”)

=1.625-1.169

=0.456

订正此题,并且教师要强调:如果计算的结果允许取近似值,才可以把分数化成小数来计算。

3.小结。

两位同组的同学互相说一说:

(1)分数、小数乘、除混合运算,怎样计算比较简便?

(2)分数、小数四则混合运算,又怎样计算简便?

看书质疑。

(三)巩固反馈

采用分小组巩固练习的形式。

1.用题板做练习,大面积反馈。

举题板订正,再把两种不同的计算方法进行比较:

不难看出,第二种方法更简便一些。所以解题方法不是一成不变的,还要根据题目的具体情况,如数的特征、运算符号等决定怎样做简便就怎样做,故在掌握了一般方法的基础上,还要灵活运用。

2.互相帮助:1,3,5组同学做题(1);2,4,6组同学做题(2)。之后,同桌同学交换检查,指出错误,加以改正,使学生掌握检查的方法,并养成检查的习惯。

教师出示正确答案,哪组的同学都做对了就给予表扬。

3.全体同学齐做。

把题中的分数化成小数后再计算。(保留两位小数。)

≈13×0.56-16.24÷3.5

=7.28-4.64

=2.64

(四)课堂总结

会计实习心得体会最新模板相关文章:

小学数学六年级上册数学教案优质8篇

小学二年级下册数学教案模板8篇

人教版小学四年级下册数学教案6篇

北师大版小学二年级数学下册教案7篇

小学数学六年级教案最新8篇

苏教版小学三年级下册数学教案6篇

北师大版小学二年级数学下册教案6篇

小学六年级趣味数学教案6篇

小学语文六年级下册工作计划8篇

小学二年级数学下册工作总结8篇

    相关推荐

    热门推荐

    点击加载更多
    32
    c
    75927

    联系客服

    微信号:fanwen9944
    点击此处复制微信号

    客服在线时间:
    星期一至星期五 8:30~12:30 14:00~18:00

    如有疑问,扫码添加客服微信,
    问题+截图进行提问,客服会第一时间答复。