提前准备教案可以帮助教师制定评估和反馈机制,及时了解学生的学习情况和需求,教案的修改应该基于对学生实际学习情况的观察和分析,会述职范文小编今天就为您带来了初一数学上册数学教案精选8篇,相信一定会对你有所帮助。
初一数学上册数学教案篇1
教学目标
1,整理前两个学段学过的整数、分数(包括小数)的知识,掌握正数和负数的概念;
2,能区分两种不同意义的量,会用符号表示正数和负数;
3,体验数学发展的一个重要原因是生活实际的需要,激发学生学习数学的兴趣。
教学难点
正确区分两种不同意义的量。
知识重点
两种相反意义的量
教学过程
(师生活动)设计理念
设置情境
引入课题上课开始时,教师应通过具体的例子,简要说明在前两个学段我们已经学过的数,并由此请学生思考:生
活中仅有这些以前学过的数够用了吗?下面的例子
仅供参考。
师:今天我们已经是七年级的学生了,我是你们的'数学老师。下面我先向你们做一下自我介绍,我的名字是xx,身高1.73米,体重58.5千克,今年40岁。我们的班级是七(13)班,有60个同学,其中男同学有22个,占全班总人数的37%
问题1:老师刚才的介绍中出现了几个数?分别是什么?你能将这些数按以前学过的数的分类方法进行分类吗?
学生活动:思考,交流
师:以前学过的数,实际上主要有两大类,分别是整数和分数(包括小数)。
问题2:在生活中,仅有整数和分数够用了吗?
请同学们看书(观察本节前面的几幅图中用到了什么数,让学生感受引入负数的必要性)并思考讨论,然后进行交流。
(也可以出示气象预报中的气温图,地图中表示地形高低地形图,工资卡中存取钱的记录页面等)
学生交流后,教师归纳:以前学过的数已经不够用了,有时候需要一种前面带有-的新数。先回顾小学里学过的数的类型,归纳出我们已经学了整数和分数,然后,举一些实际生活有相反意义的量,说明为了表示相反意义的量,我们需要引入负数,这样做强调了数学的严密性,但对于学生来说,更多地感到了数学的枯燥乏味为了既复习小学里学过的数,又能激发学生的学习兴趣,所以创设如下的问题情境,以尽量贴近学生的实际。
这个问题能激发学生探究的欲望,学生自己看书学习是培养学生自主学习的重要途径,都应予以重视。
以上的情境和实例使学生体会生活中处处有数学,通过实例,使学生获取大量的感性材料,为正确建立相反意义的量奠定基础。
分析问题
探究新知问题3:前面带有一号的新数我们应怎样命名它呢?为什么要引人负数呢?通常在日常生活中我们用正数和负数分别表示怎样的量呢?
这些问题都必须要求学生理解。
教师可以用多媒体出示这些问题,让学生带着这些问题看书自学,然后师生交流。
这阶段主要是让学生学会正数和负数的表示。
强调:用正,负数表示实际问题中具有相反意义的量,而相反意义的量包含两个要素:
一是它们的意义相反,如向东与向西,收人与支出;
二是它们都是数量,而且是同类的量。这些问题是这节课的主要知识,教师要清楚地向学生说明,并且要注意语言的准确与规范,要舍得花时间让学充分发表想法。
举一反三思维拓展经过上面的讨论交流,学生对为什么要引人负数,对怎样用正数和负数表示两种相反意义的量有了初步的理解,教师可以要求学生举出实际生活中类似的例子,以加深对正数和负数概念的理解,并开拓思维。
问题4:请同学们举出用正数和负数表示的例子。
问题5:你是怎样理解正整数负整数,,正分数和负分数的呢?请举例说明。
能否举出例子是学生对知识掌握程度的体现,也能进一步帮助学生理解引负数的必要性
课堂练习教科书第5页练习
初一数学上册数学教案篇2
教学目标
1、知道有理数混合运算的运算顺序,能正确进行有理数的混合运算;
2、会用计算器进行较繁杂的有理数混合运算。
教学重点
1、有理数的混合运算;
2、运用运算律进行有理数的混合运算的简便计算。
教学难点
运用运算律进行有理数的混合运算的简便计算。
有理数的混合运算的运算顺序
也就是说,在进行含有加、减、乘、除的混合运算时,应按照运算级别从高到低进行,因为乘方是比乘除高一级的运算,所以像这样的有理数的混合运算,有以下运算顺序:
先乘方,再乘除,最后加减。如果有括号,先进行括号内的运算。
你会根据有理数的运算顺序计算上面的算式吗?
2、8有理数的混合运算:同步练习
1、有依次排列的3个数:2,9,7,对任意相邻的两个数,都用右边的数减去左边的数,所得之差写在这两个数之间,可产生一个新数串:2,7,9,—2,7,这称为第一次操作。做第二次同样的操作后也可产生一个新数串:2,5,7,2,9,—11,—2,9,7,继续依次操作下去,问:从数串2,9,7开始操作第一百次以后所产生的那个新数串的所有数之和是。
《2、8有理数的混合运算》课后训练
1、兴旺肉联厂的冷藏库能使冷藏食品每小时降温3 ℃,每开库一次,库内温度上升4 ℃,现有12 ℃的肉放入冷藏库,2小时后开了一次库,再过3小时后又开了一次库,再关上库门4小时后,肉的温度是多少摄氏度?
初一数学上册数学教案篇3
教学目的:
1.了解计算器的性能,并会操作和使用;
2.会用计算器求数的平方根;
重点:用计算器进行数的加、减、乘、除、乘方和开方的计算;
难点:乘方和开方运算;
教学过程:
1.计算器的使用介绍(科学计算器)
2.用计算器进行加、减、乘、除、乘方、开方运算
例1用计算器求下列各式的值.
(1)(-3.75)+(-22.5) (2)51.7(-7.2)
解(1)
(-3.75)+(-22.5)=-26.25
(2)
51.7(-7.2)=-372.24
说明输入数据时,按键顺序与写这个数据的顺序完全相同,但输入负数时,符号转换键要放在数据之后键入.
随堂练习
用计算器求值
1.9.23+10.2 2.(-2.35)×(-0.46)
答案1.37.8 2.1.081
初一数学上册数学教案篇4
教学目标:
1、经历用数格子的办法探索勾股定理的过程,进一步发展学生的合情推力意识,主动探究的习惯,进一步体会数学与现实生活的紧密联系。
2、探索并理解直角三角形的三边之间的数量关系,进一步发展学生的说理和简单的推理的意识及能力。
重点难点:
重点:了解勾股定理的由来,并能用它来解决一些简单的问题。
难点:勾股定理的发现
教学过程
一、创设问题的情境,激发学生的学习热情,导入课题
出示投影1(章前的图文p1)教师道白:介绍我国古代在勾股定理研究方面的贡献,并结合课本p5谈一谈,讲述我国是最早了解勾股定理的国家之一,介绍商高(三千多年前周期的数学家)在勾股定理方面的贡献。
出示投影2(书中的p2图1—2)并回答:
1、观察图1-2,正方形a中有_______个小方格,即a的面积为______个单位。
正方形b中有_______个小方格,即a的面积为______个单位。
正方形c中有_______个小方格,即a的面积为______个单位。
2、你是怎样得出上面的结果的?在学生交流回答的基础上教师直接发问:
3、图1—2中,a,b,c之间的面积之间有什么关系?
学生交流后形成共识,教师板书,a+b=c,接着提出图1—1中的a.b,c的关系呢?
二、做一做
出示投影3(书中p3图1—4)提问:
1、图1—3中,a,b,c之间有什么关系?
2、图1—4中,a,b,c之间有什么关系?
3、从图1—1,1—2,1—3,1|—4中你发现什么?
学生讨论、交流形成共识后,教师总结:
以三角形两直角边为边的正方形的面积和,等于以斜边的正方形面积。
三、议一议
1、图1—1、1—2、1—3、1—4中,你能用三角形的边长表示正方形的面积吗?
2、你能发现直角三角形三边长度之间的关系吗?
在同学的交流基础上,老师板书:
直角三角形边的两直角边的平方和等于斜边的平方。这就是的“勾股定理”
也就是说:如果直角三角形的两直角边为a,b,斜边为c
那么
我国古代称直角三角形的较短的直角边为勾,较长的为股,斜边为弦,这就是勾股定理的由来。
3、分别以5厘米和12厘米为直角边做出一个直角三角形,并测量斜边的长度(学生测量后回答斜边长为13)请大家想一想(2)中的规律,对这个三角形仍然成立吗?(回答是肯定的:成立)
四、想一想
这里的29英寸(74厘米)的电视机,指的是屏幕的长吗?只的是屏幕的款吗?那他指什么呢?
五、巩固练习
1、错例辨析:
△abc的两边为3和4,求第三边
解:由于三角形的两边为3、4
所以它的第三边的c应满足=25
即:c=5
辨析:(1)要用勾股定理解题,首先应具备直角三角形这个必不可少的条件,可本题
△abc并未说明它是否是直角三角形,所以用勾股定理就没有依据。
(2)若告诉△abc是直角三角形,第三边c也不一定是满足,题目中并为交待c是斜边
综上所述这个题目条件不足,第三边无法求得。
2、练习p7§1.11
六、作业
课本p7§1.12、3、4
教学目标:
1、经历运用拼图的方法说明勾股定理是正确的过程,在数学活动中发展学生的探究意识和合作交流的习惯。
2、掌握勾股定理和他的简单应用
重点难点:
重点:能熟练运用拼图的方法证明勾股定理
难点:用面积证勾股定理
教学过程
七、创设问题的情境,激发学生的学习热情,导入课题
我们已经通过数格子的方法发现了直角三角形三边的关系,究竟是几个实例,是否具有普遍的意义,还需加以论证,下面就是今天所要研究的内容,下边请大家画四个全等的直角三角形,并把它剪下来,用这四个直角三角形,拼一拼、摆一摆,看看能否得到一个含有以斜边c为边长的正方形,并与同学交流。在同学操作的过程中,教师展示投影1(书中p7图1—7)接着提问:大正方形的面积可表示为什么?
(同学们回答有这几种可能:(1)(2))
在同学交流形成共识之后,教师把这两种表示大正方形面积的式子用等号连接起来。
=请同学们对上面的式子进行化简,得到:即=
这就可以从理论上说明勾股定理存在。请同学们去用别的拼图方法说明勾股定理。
八、讲例
1、飞机在空中水平飞行,某一时刻刚好飞机飞到一个男孩头顶正上方4000多米处,过20秒,飞机距离这个男孩头顶5000米,飞机每时飞行多少千米?
分析:根据题意:可以先画出符合题意的图形。如右图,图中△abc的米,ab=5000米,欲求飞机每小时飞行多少千米,就要知道飞机在20秒的时间里的飞行路程,即图中的cb的长,由于直角△abc的斜边ab=5000米,ac=4000米,这样的cb就可以通过勾股定理得出。这里一定要注意单位的换算。
解:由勾股定理得
即bc=3千米飞机20秒飞行3千米,那么它1小时飞行的距离为:
答:飞机每个小时飞行540千米。
九、议一议
展示投影2(书中的图1—9)
观察上图,应用数格子的方法判断图中的三角形的三边长是否满足
同学在议论交流形成共识之后,老师总结。
勾股定理存在于直角三角形中,不是直角三角形就不能使用勾股定理。
十、作业
1、1、课文p11§1.21、2
2、选用作业。
初一数学上册数学教案篇5
【教学目标】
1、经历探索去括号法则的过程,了解去括号法则的依据。
2、会用去括号进行简单的计算。
3、经历观察、归纳等教学活动,培养学生合作精神和探究问题的能力。
【重、难点】
理解去括号法则,熟练运用去括号法则。
【教学过程】
一、情境创设
在假期的勤工俭学活动中,小亮从报社以每份0。4元的价格购进a份报纸,以每份0。5元的价格卖出b份(b≤a)报纸,剩余的报纸以每份0。2元的价格退回报社,小亮赢利多少元?
思考:如何合并你算出的这个代数式中的同类项?
同步测试
1、七年级(1)班男生有a人,女生比男生的2倍少25人,男生比女生的人数多。试回答下列问题。(用代数式来表示,能化简的化简)
(1)女生有多少人?
(2)男生比女生多多少人?
(3)全班共有多少人?
测试
?拓展提优】
14、如果a是三次多项式,b是三次多项式,那么a+b一定是()
a、六次多项式
b、次数不高于3的整式
c、三次多项式
d、次数不低于3的整式
15、多项式(xyz2—4yz—1)+(—3xy+z2xy—3)—(2xyz2+xy)的值()
a、与x、y、z均有关
b、与x有关,而与y、z无关
c、与x、y有关,而与z无关
d、与x、y、z均无关
16、已知a=20xxx+20xx,b=20xxx+20xx,c=20xxx+20xx,那么(a—b)2+(b—c)2+(c—a)2的值等于()
a、4 b、6 c、8 d、10
17、当x=1时,代数式mx3+nx+1的值为20xx,则当x=—1时,代数式mx3+nx+1的值为()
a、—20xx b、—20xx c、—20xx d、—20xx
18、若m=3a2—2ab—4b2,n=4a2+5ab—b2,则8a2—13ab—15b2等于()
a、2m—n b、3m—2n c、4m—n d、2m—3n
19、把四张形状大小完全相同的小长方形卡片(如图①)不重叠地放在一个底面为长方形(长为m cm,宽为n cm)的盒子底部(如图②),盒子底面未被卡片覆盖的部分用阴影表示。则图②中两块阴影部分的周长和是()
a、4m cm b、4n cm
c、2(m+n)cm d、4(m—n)cm
初一数学上册数学教案篇6
(1)常见的几何体;
(2)构成图形的基本元素——点、线、面及点、线与平面
图形的一些简单性质;点动成线,线动成面,面动成体
(3)棱柱的特征;并注意棱柱和圆柱的联系与区别
(4)长方体、正方体的表面沿某些棱展开的平面图形及圆
柱、圆锥的侧面展开图;
(5)用一个平面去截一个几何体,截面的形状;
(6)物体的三视图,立方体及其简单组合的三视图;
(7)生活中的平面图形。
一。填空:
1、这个几何体的名称是______;它有_____个面组成;它有____个顶点;经过每个顶点有____条边。
2、正方体或长方体是一个立体图形,它是由______个面,______条棱,_____个顶点组成的。
3、在①长方体、②球、③圆锥、④圆柱、⑤三棱柱这五种几何体中,其主视图、左视图、俯视图都完全相同的是(填上序号即可)
4、一个棱柱有十个顶点,且所有侧棱的和为30cm,则每条侧棱长为cm.
5、将下面4个图用纸复制下来,然后沿所画线折起来,把折成的立体图形名称写在图的下边横线上:
6、如图是一些相同的正方块构成的立体图形的三视图,则构成这个立体图形的小方块数为。
7、如图所示,木工师傅把一个长为1.6米的长方体木料锯成3段后,表面积比原来增加了
80,那么这根木料本来的体积是
8、要把一个长方体的表面剪开展成平面图形,至少需要剪开________条棱。
9、如图,截去正方体一角变成一个多面体,这个多面体有____个面,____条棱。
10、若要使图中平面展开图按虚线折叠成正方体后,相对面上两个数之和为6,x=____,y=____.
11、四棱柱按如图粗线剪开一些棱,展成平面图形,请画出平面图来:
12、薄薄的硬币在桌面上转动时,看上去象球,这说明了_____________.
13、右图中,三角形共有个。
14、如图是用边长为1的小正方体摆放成的一个几何体的三视图,这个几何体的表面积为。
第13题主视图俯视图左视图
二:选择题(每题4分,共24分)。
15、桌上摆满了朋友们送来的礼物,小狗贝贝好奇地想看个究竟。
pqmn
①小狗先是站在地面上看,②然后抬起了前腿看,③唉,还是站到凳子上看吧,④最后,
它终于爬上了桌子………按小狗四次看礼物的顺序,四个画面的顺序为()
a.mnpqb.q
16、以下四个平面图形中,不是正方体的展开图的是()
abcd
17、只有盖的盒子长、宽、高分别为5、5、3cm,如图所示,有一只蚂蚁从a点出
发,沿棱爬行,爬行的路径不许重复,则蚂蚁回到a点时,最多爬行()
a.24cmb.32cmc.34cmd.48cm
18、一个几何体是由若干个相同的正方体组成的,其主视图和左视图
如图所示,则这个几何体最多可由多少个这样的正方体组成()
a.12个b.13个c.14个d.18个
19、把一个正方体截去一个角,剩下的几何体最多有几个面()
a.5个面b.6个面c.7个面d.8个面
20、从多边形一条边上的一点(不是顶点)发出发,连接各个顶点得
到20xx个三角形,则这个多边形的边数为()。
a.20xxb.20xxc.20xxd.20xx
21、下列四个图形折叠后与所得的正方体的各个面上所标数字一致的是()
22、如图(1)是正方体表面积展开图,如果将其折回原来的
正方体图(2)时,与点p重合的两点应该是()
a.s和zb.t和y
c.u和yd.t和v
23、用一个平面去截①圆锥;②圆柱;③球;④五棱柱,能得到截面是圆的图形是()
a.①②④ b.①②③ c.②③④ d.①③④
24、如图是正方体的表面展开图,折叠成正方体后,其中哪两个完全相同()
a.(1)(2)b.(2)(3)c.(3)(4)d.(2)(4)
25、从多边形一个顶点处出发,连接各个顶点得到20xx个三角形,
则这个多边形的边数为()
a.20xxb.20xxc.20xxd.20xx
初一数学上册数学教案篇7
教学目标:
知识与技能
1.掌握直角三角形的判别条件,并能进行简单应用;
2.进一步发展数感,增加对勾股数的直观体验,培养从实际问题抽象出数学问题的能力,建立数学模型.
3.会通过边长判断一个三角形是否是直角三角形,并会辨析哪些问题应用哪个结论.
情感态度与价值观
敢于面对数学学习中的困难,并有独立克服困难和运用知识解决问题的成功经验,进一步体会数学的应用价值,发展运用数学的信心和能力,初步形成积极参与数学活动的意识.
教学重点
运用身边熟悉的事物,从多种角度发展数感,会通过边长判断一个三角形是否是直角三角形,并会辨析哪些问题应用哪个结论.
教学难点
会辨析哪些问题应用哪个结论.
课前准备
标有单位长度的细绳、三角板、量角器、题篇
教学过程:
复习引入:
请学生复述勾股定理;使用勾股定理的前提条件是什么?
已知△abc的两边ab=5,ac=12,则bc=13对吗?
创设问题情景:由课前准备好的一组学生以小品的形式演示教材第9页古埃及造直角的方法.
这样做得到的是一个直角三角形吗?
提出课题:能得到直角三角形吗
讲授新课:
⒈如何来判断?(用直角三角板检验)
这个三角形的三边分别是多少?(一份视为1)它们之间存在着怎样的关系?
就是说,如果三角形的三边为,,,请猜想在什么条件下,以这三边组成的三角形是直角三角形?(当满足较小两边的平方和等于较大边的平方时)
⒉继续尝试:下面的三组数分别是一个三角形的三边长a,b,c:
5,12,13;6,8,10;8,15,17.
(1)这三组数都满足a2+b2=c2吗?
(2)分别以每组数为三边长作出三角形,用量角器量一量,它们都是直角三角形吗?
⒊直角三角形判定定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形.
满足a2+b2=c2的三个正整数,称为勾股数.
⒋例1一个零件的形状如左图所示,按规定这个零件中∠a和∠dbc都应为直角.工人师傅量得这个零件各边尺寸如右图所示,这个零件符合要求吗?
随堂练习:
⒈下列几组数能否作为直角三角形的三边长?说说你的理由.
⑴9,12,15;⑵15,36,39;
⑶12,35,36;⑷12,18,22.
⒉已知?abc中bc=41,ac=40,ab=9,则此三角形为_______三角形,______是角.
⒊四边形abcd中已知ab=3,bc=4,cd=12,da=13,且∠abc=900,求这个四边形的面积.
⒋习题1.3
课堂小结:
⒈直角三角形判定定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形.
⒉满足a2+b2=c2的三个正整数,称为勾股数.勾股数扩大相同倍数后,仍为勾股数.
初一数学上册数学教案篇8
教学目标:
知识能力:理解有理数的概念,掌握有理数的两种分类方法,能够按要求对给定的有理数进行分类。
过程与方法:通过本节的学习,培养学生正确的分类讨论观点和分类能力。
情感、态度、价值观:通过本节课的学习,体验成功的喜悦,保持学好数学的信心。
教学重点:
掌握有理数的两种分类方法
教学难点:
给定的数字将被填入它所属的集合中
教学方法:
问题导向法
学习方法:
自主探究法
教学过程:
一、形势归纳
小学我们学了整数和分数,上节课我们学了正数和负数。谁能快速提出以下问题?
有以下数字:15,—1/9,—5,2/15,—13/8,0.1,—5.22,—80,0,123,2.33
(1)将以上数字填入以下两组:正整数集{}和负整数集{}。你填完了吗?
(2)将以上数字填入以下两个集合:整数集合{}和分数集合{}。你填完了吗?
称整数和分数为有理数。(指点题,板书)
二、自学指导
学生自学课本,根据课本寻找自学的机会
提纲中问题的答案;老师先做必要的板书准备,再到学生中巡视指导,并了解掌握学生自学情况,为展示归纳作准备。
三、展示归纳
1、找有问题的学生逐题展示自学提纲中的问题答案,学生说,老师板书;
2、发动学生进行评价、补充、完善,教师根据每个题目的展示情况进行必要的讲解和强调;
3、全部展示完毕后,老师对本段知识做系统梳理,关键点予以强调。
四、变式练习
逐题出示,先让学生独立完成,再请有问题的学生汇报结果,老师板书,并发动其他学生评价、补充并完善,最后老师根据需要进行重点强调。
五、总结与反思:通过本节课的学习,你有什么收获?
六、作业:必做题:课本14页:1、9题
会计实习心得体会最新模板相关文章: