通过认真准备教案,我们能够更好地与学生进行互动和交流,促进良好的师生关系和学习氛围,教案的设计应该充分体现教学目标和教学内容的连贯性,会述职范文小编今天就为您带来了小学数学六年级比例教案5篇,相信一定会对你有所帮助。
小学数学六年级比例教案篇1
教学内容:正比例的意义。
教学目的:使学生理解正比例的意义,会正确判断成正比例的量,培养学生的判断能力。
教学重点:正比例的意义。
教学难点:正比例的判断。
教具准备:小黑板、投景影片
教学过程:
一、 复习
根据下面各题,先口答列式及得数,后说数量关系式。
1、 一列火车2 小时行驶250千米,平均每小时行驶多少千米?
2、 一种布,买3米共要27元,平均每米布多少元?
3、 某印刷厂5天生产2.5万本练习册,平均每天生产多少万本练习册?
师据学生回答板书如下:
路程/时间=速度 总价/数量=单价 工作总量/工作时间=工作效率
二、引新
我们已经学过一些常见的数量关系,如上面这些速度、时间和路程的关系,单价、数量和总价的关系,工作效率、工作时间和工作总量的关系等。现在我们进一步来研究这些数量关系中的一些特征。如速度一定,路程和时间有什么关系?或者时间一定,路程和速度之间有什么关系?这节课我们先来学习这方面的知识。正比例的意义。(板书)
三、新授
1、 教学例1。一列火车行驶的时间和所行的路程如下表。
时间(时) 1 2 3 4 5 6 7 8
路程(千米) 90 180 270 360 450 540 630 720
(1) 引导学生观察上表内数据。
(2) 边观察边思考下面问题:
(1) 表中有哪几种量?这两促量有没有关系?
(2) 这两种量是怎样设化的?(路程是随着时间的变化页变化。时间扩大,路程也随着扩大;时间缩小,路程也随着缩小。)
(3) 引导学生分析这两种相关联的量的变化有什么规律?
(1)从表内找出几组相对应的两个数,求出比值,再比较比值的大小。指名口答,师板书:
90/1=90 360/4=90 540/6=90
(2)从下面的比式中,你能不能找出变化规律?这个90实际上就是这列火车的什么?(速度)
(3)师:它们之间的关系可以用式子表示
路程/时间=速度(一定)
(4) 小结。
时间和路程是两种相关联的量,路程随着时间的变化而变化。时间扩大,路程随着扩大;时间缩小,路程也随着缩小。它们扩大、缩小的规律是:路程和时间的比的比值总是一定的。
2、 教学例2
(1)出示例2,在布店的柜台上,有像下面一张写着某种花布的米数和总价的表。
数量(米) 1 2 34 5 6 7
总价(元) 8.2 16.4 24.6 32.8 41.0 49.2 57.4
(2)引导学生观察上表内的数据。
(3) 回答下面风个问题:
表中有哪两种量?这两种量有关系吗?为什么?
这两种量是怎样变化的?
它们的变化有什么规律?
相对应的总价和米数的比各是多少?比值是多少?比较这些比值的大小,相等吗?这个比值实际上就是花布的什么?
(4) 小结。
花布的米和总价也是两种相关联的量,总价是随着米数的变化而变化的`。米数扩大,总价也随着扩大;米数缩小,总价随着缩小。它们扩大,缩小的规律是:总价和米数的比的比值是一定的。
3、 概括正比例的意义及关系式。
(1) 比较上面的例1和例2,它们有什么共同点?
(2) 判断成正比例量的方法:是什么?
(3) 师:例1中路随着时间的变化而变化,它们的比的比值,也就是速度保持一定。年以,路程和时间是成正比例的量。大家想一想:在例2中,有哪两种相关联的量?它们是不是成正比例的量?为什么?
(4) 概括关系式:
Y/X=K(一定)
4、 教学例3。
出示例3
师:大家能不能根据上面的判断成正比例量的方法说说?指名口述、师帮助纠正。关系式是:总重量/袋数=每袋面粉重量(一定)
5、 小结。
判断两种相关联的量是否成正比例,关键是看这两种相关联的量中相对应的两个数的比值是否一定,如果比值一定,那么这两种量就是成正比例的量。
四、巩固练习
第13页做一做
五、 总结。
1、 什么叫成正比例的量?
2、 怎样判断两种量是成正比例的量?
六、 作业: 完成练习六第1-3题。
小学数学六年级比例教案篇2
教学内容:
p62~p63页的例1及相应的“试一试”“练一练”。完成练习十三第1~3题。
教学目标:
1.使学生经历从具体实例中认识成正比例的量的过程,初步理解正比例的意义,学会根据正比例的意义判断两种相关联的量是不是成正比例。
2.让学生在认识成正比例的量的过程中,初步体会数量之间相依互变的关系,感受有效表示数量关系及其变化规律的不同数学模型,进一步培养观察能力和发现规律的能力。
3.让学生进一步体会数学和日常生活的密切联系,增强从生活现象中探索数学知识和规律的意识。
教学重难点:
重点:结合实际情境认识成正比例量的特点,加深对正比例量的理解。
难点:能跟据正比例的意义判断两种相关联的量是否成正比例。
教学准备:
课件
课时安排:
第一课时
课前设计:
一、导入。
谈话:通过将近六年的数学学习,我们已经了解了一些数量之间的关系,例如行程问题中速度、时间、路程之间的关系,你知道这三个量之间的关系吗?再如购物问题中单价、数量、总价之间的关系,你知道这三个量之间的关系吗?这个单元我们要用一种新的观点,更深入地研究数量之间的关系,什么观点呢?事物变化的观点,让一些量变起来,从变化中发现规律。
二、教学例1。
1.出示例1的表格。提问:表中列出了哪两种量?(板书:时间和路程)观察表中的数据,哪一种量的变化引起了另一种量的变化?你是怎么看出来的?
指名回答。
谈话:时间变化,路程也随着变化,我们就说,路程和时间是两种相关联的量。(板书:路程和时间是两种相关联的量。)“关联”是什么意思?为什么说路程和时间是两种相关联的量?
2.我们已经知道路程和时间是两种相关联的量。还要进一步研究,这两种量的变化有什么规律?
3.仔细观察表中的数据,这两种量在变化中有没有什么不变的规律呢?现在小组内讨论,再在班内交流。(有的学生可能会发现两种量中所对应的两个数的比值不变)
提问:观察这些比值,你发现了什么?这个比值80表示什么?(速度)你能用一个式子来表示上面的规律吗?根据学生回答,板书:=速度(一定)
4.讲述:通过观察和计算,我们对路程和时间的关系有两点发现:第一点路程和时间是两种相关联的量,也就是时间变化,路程也随着变化;第二点路程和对应的时间的比的比值一定(也就是速度一定)。具备了这两个条件,我们就可以得到结论:行驶的路程和时间成正比例;行驶的路程和时间成正比例的量。(板书:路程和时间成正比例,路程和时间是成正比例的量)
5.谈话:这就是这节课我们所学习的正比例。(板书课题)请阅读课本第62页的一段文字,各自默读,边读边画。
再指名读。提问:你能读懂吗?
在这题中,哪个量和哪个量是成正比例的量?同桌互相说一说为什么时间和路程是成正比例的量,并在全班交流。
三、教学“试一试”
1.出示“试一试”,学生自由读题。
2.要求学生根据已知条件把表格填写完整。
3.学生根据表中数据,先尝试独立完成表格。下面的四个问题,然后和同桌交流。
4.全班交流。板书:总价和数量是相关联的量,=单价(一定),总价和数量成正比例。
5.让学生根据板书完整地说一说铅笔的总价和数量成什么关系。
四、用含有字母的式子表示正比例关系。
1.比较例题和“试一试”的相同点。
提问:观察上面的两个例子,它们有什么相同的地方呢?
2.谈话:如果用字母和分别表示两种相关联的量,用表示它们的比值,正比例关系可以用怎样的式子来表示呢?
谈话:这是正比例关系式表达式,对这个式子要这样理解:和表示两种相关联的量,比的比值一定,我们就说和成正比例。
五、巩固练习
1.完成第63页“练一练”。
学生独立思考并作出判断,要用完整的语言说出判断的理由。
2.完成补充习题。
一辆自行车在公路上行驶,行驶的时间和路程如下表。
时间/时123456……
路程/千米355060708590……
这辆自行车行驶的时间和路程是相关联的量吗?成正比例吗?为什么?
先独立思考,再和同桌说一说。
全班交流,并讨论:成正比例的量必须符合哪些条件?
3.完成练习十三第1题。
(1)学生按题目要求尝试独立完成。
(2)全班交流,重点让学生说说为什么碾米机的工作时间和碾米数量成正比例,引导学生完整地说出判断的思考过程。
4.完成练习十三第2题。
(1)让学生独立判断,并说明理由。
(2)谈话:如果去掉“同一时间”这个前提,物体的高度和影长还成正比例吗?
5.完成练习十三第3题。
(1)说一说:将图中的正方形按怎样的比放大,放大后的正方形的边长各是几厘米?
(2)画一画:在书上画出放大后的图形。
(3)算一算:算出每个图形的周长和面积,并填在表中。
(4)讨论表格下面的两个问题。谈话:两种量若要成正比例必须是相关联的量,但相关联的量不一定成正比例,只有当两种相关联的量的比值一定时,它们才成正比例。
六、全课。
提问:通过这节课的学习,你有什么收获?
板书设计
认识成正比例的量
时间和路程路程和时间是两种相关联的量。
=80=80=80……
=速度(一定)
路程和时间成正比例,路程和时间是成正比例的量。
总价和数量是相关联的量,=单价(一定),总价和数量成正比例
=(一定)
小学数学六年级比例教案篇3
教学目标
1.使学生理解正、反比例的意义,能够初步判断两种相关联的量是否成比例,成什么比例.
2.通过观察、比较、归纳,提高学生综合概括推理的能力.
3.渗透辩证唯物主义的观点,进行运用变化观点的启蒙教育.
教学重难点
理解正反比例的意义,掌握正反比例的变化的规律.
教学过程
一、导入新课
(一)昨天老师买了一些苹果,吃了一部分,你能想到什么?
(二)教师提问
1.你为什么马上能想到还剩多少呢?
2.是不是因为吃了的和剩下的是两种相关联的量?
教师板书:两种相关联的量
(三)教师谈话
在实际生活中两种相关的量是很多的,例如总价和单价是两种相关联的量,总价和
数量也是两种相关联的量.你还能举出一些例子吗?
二、新授教学
(一)成正比例的量
例1.一列火车行驶的时间和所行的路程如下表:
时间(时):路程(千米)
1 :90
2 :180
3 :270
4 :360
5 :450
6 :540
7 :630
8 :720
1.写出路程和时间的比并计算比值.
(1) 2表示什么?180呢?比值呢?
(2) 这个比值表示什么意义?
(3) 360比5可以吗?为什么?
2.思考
(1)180千米对应的时间是多少?4小时对应的路程又是多少?
(2)在这一组题中上边的一列数表示什么?下边一列数表示什么?所求出的比值呢?
教师板书:时间、路程、速度
(3)速度是怎样得到的?
教师板书:
(4)路程比时间得到了速度,速度也就是比值,比值相当于除法中的什么?
(5)在这组题中谁与谁是两种相关联的量?它们是如何相关联的?举例说明变化规律.
3.小结:有什么规律?
小学数学六年级比例教案篇4
教学目标:
1、经历正比例意义的建构过程,通过具体问题认识成正比例的量,能找出生活中成正比例量的实例,能正确判断成正比例的量。
2、通过观察、比较、分析、归纳等数学活动,发现正比例量的特征,并尝试抽象概括正比例的意义。提高分析比较、归纳概括、判断推理能力,同时渗透初步的函数思想。
3、在主动参与数学活动的`过程中,感受数学思考过程的条理性和数学结论的确定性,并乐于与人交流。
教学过程:
一、谈话导入
1.出示苹果、梨、橘子的图片问:起一个总的名称是什么?
2.出示:仿照第一题填空
(1)时间:3小时20分2小时45分
(2)总价:5元()()
(3)():6千克800克3吨350克
填后问:左边的是什么?右边对应的是什么?你还能举出一种量和它对应的数吗?
二、学习新课
(一)相关联的量
教师做实验,向弹簧称上加钩码问:
(1)这其中有哪两种变化着的量?(2)弹簧长度为什么会变化?
指出:弹簧长度是随着钩码数量的变化而变化的,像这样的两种量我们把他们叫做相关联的量。
追问:现在你知道什么叫相关联的量了吗?你能举例说明吗?
(二)学习成正比例的量
1、出示19页表格
观察图像,填表,回答下面的问题:
(1)表中有哪两个相关联的量?
(2)正方形的周长是怎样随着边长的变化而变化的?
(3)正方形的面积是怎样随着边长的变化而变化的?
(4)它们的变化规律相同吗?
小组讨论交流汇报
2、20页第2题
3、正比例的意义
(1)例1和例2有什么共同点?(两种相关联的量,比值一定)
师指出:这样的两种量就是成正比例的量,他们的关系叫成正比例关系。
问:现在你知道什么叫成正比例的量了吗?自由说说指生回答阅读课本
师板书关系式:y/x=k(一定)
(2)那么,要判断两种量是否成正比例的量该看什么呢?
三、巩固提高:19页说一说。
四、全课小结
小学数学六年级比例教案篇5
教学内容:比例的意义、基本性质,比例各部分名称,组比例。
教学目标:
1. 使学生理解比例的意义,认识比例各部分的名称。
2. 能运用比例的意义判断两个比能否组成比例,并会组比例。理解并掌握比例的基本性质。
教学重点:比例的意义和基本性质。
教学难点:理解比例的基本性质。
教学过程:
一、 复习
1、 提问:什么是比?一辆汽车4小时行160千米,说出路程和时间的比。
2、 求下面各比的比值,哪些比的比值相等?
12:16 : 4.5:2.7 10:6
二、 新授
提示课题:这节课我们在过去学过比的知识的基础上,学一个的知识:比例的意义和基本性质。
1、 比例的意义
出示例1:一辆汽车第一次2小时行驶80千米,第二次5小时行驶200千米。列表如下:
时间(时) 2 5
路程(千米) 80 200
从上不中可以看到,这辆汽车:
第一次所行台的路程和时间的比是____;
第二次所行驶的路程和时间的比是____;
这两个比的比值各是多少?它们有什么关系?
(1) 根据学生回答,师板书结果后,师指出:这两个比的比值都是40,所以这两个比是相等的,可以用等号将两个比连起来写成下面的等式。
板书:80:2=200:5 或 =
师:这样的式子,我们给它一个名字叫做比例。
(2) 口答
A、把复习第2题中两个比值相等的比用等号连起来。
B、用等号连接起来的式子叫做什么?
C、根据刚才的回答,你能说出什么叫比例吗?
(3) 小结。
A、表示两个比相等的式子叫做比例,两个比的比值相等也就是这两个比相等。
B、要判断两个比能否组成比例,可以看这两个比的比值是否相等。比值相等的两个比可以组成比例,比值不相等的两个比就不能组成比例。
(4) 练习,课本第10页做一做。
2、 比例的基本性质。
(1) 比例各部分的名称。
引导学生观察黑板上的例题:80:2=200:5
并自学课本
提问:什么叫做比例的项?什么叫前项?什么叫后项?什么叫内项?什么叫外项?这四项分别在等号的什么位置?
(2) 说出下面各比例的外项和内项?
6:10=9:15 8:3=3.2:1.2 1/3:1/6=16:8
(3) 计算:上面比例中的外项积与内项积。
(4) 引导学生观察每个比例中的计算结果,发现这两个乘积有怎样的关系?
师:想一想,如果把比例写成分数形式,等号两端的分子分母交叉相乘的积有什么关系?
(5)你能得出什么结论?
三、 巩固练习
1、 完成第2页的做一做。
2、 完成第3页的做一做第1题。
四、 总结
1、 比例的意义和基本性质是什么?
2、 怎样判断两个比能否组成比例?
五、 作业
1、 完成练习四的第1-3题。
会计实习心得体会最新模板相关文章: