制定教案的时候,我们一定要考虑到学生们的学习情况,优秀的教案可以调动学生的积极性,以下是会述职范文小编精心为您推荐的数学10加几教案8篇,供大家参考。
数学10加几教案篇1
内容分析:
1、 集合是中学数学的一个重要的基本概念
在小学数学中,就渗透了集合的初步概念,到了初中,更进一步应用集合的语言表述一些问题。例如,在代数中用到的有数集、解集等;在几何中用到的有点集。至于逻辑,可以说,从开始学习数学就离不开对逻辑知识的掌握和运用,基本的逻辑知识在日常生活、学习、工作中,也是认识问题、研究问题不可缺少的工具。这些可以帮助学生认识学习本章的意义,也是本章学习的基础。
把集合的初步知识与简易逻辑知识安排在高中数学的最开始,是因为在高中数学中,这些知识与其他内容有着密切联系,它们是学习、掌握和使用数学语言的基??
例如,下一章讲函数的概念与性质,就离不开集合与逻辑。
本节首先从初中代数与几何涉及的集合实例入手,引出集合与集合的元素的概念,并且结合实例对集合的概念作了说明
然后,介绍了集合的常用表示方法,包括列举法、描述法,还给出了画图表示集合的例子。
这节课主要学习全章的引言和集合的基本概念
学习引言是引发学生的学习兴趣,使学生认识学习本章的意义
本节课的教学重点是集合的基本概念。
集合是集合论中的原始的、不定义的概念
在开始接触集合的概念时,主要还是通过实例,对概念有一个初步认识
教科书给出的“一般地,某些指定的对象集在一起就成为一个集合,也简称集
”这句话,只是对集合概念的描述性说明。
教学过程:
一、复习引入:
1.简介数集的发展,复习最大公约数和最小公倍数,质数与和数;
2.教材中的章头引言;
3.集合论的创始人——康托尔(德国数学家)(见附录);
4.“物以类聚”,“人以群分”;
5.教材中例子(p4)。
二、讲解新课:
阅读教材第一部分,问题如下:
(1)有那些概念?是如何定义的?
(2)有那些符号?是如何表示的?
(3)集合中元素的特性是什么?
(一)集合的有关概念:由一些数、一些点、一些图形、一些整式、一些物体、一些人组成的.我们说,每一组对象的全体形成一个集合,或者说,某些指定的对象集在一起就成为一个集合,也简称集.集合中的每个对象叫做这个集合的元素.
定义:一般地,某些指定的对象集在一起就成为一个集合.
1、集合的概念
(1)集合:某些指定的对象集在一起就形成一个集合(简称集)
(2)元素:集合中每个对象叫做这个集合的元素
2、常用数集及记法
(1)非负整数集(自然数集):全体非负整数的集合,记作n,n={0,1,2,…}
(2)正整数集:非负整数集内排除0的集,记作n*或n+,n*={1,2,3,…}
(3)整数集:全体整数的集合,记作z ,z={0,±1,±2,…}
(4)有理数集:全体有理数的集合,记作q,q={整数与分数}
(5)实数集:全体实数的集合,记作r,r={数轴上所有点所对应的数}
注:(1)自然数集与非负整数集是相同的,也就是说,自然数集包括数0
(2)非负整数集内排除0的集,记作n*或n+
q、z、r等其它数集内排除0的集,也是这样表示,例如,整数集内排除0的集,表示成z*
3、元素对于集合的隶属关系
(1)属于:如果a是集合a的元素,就说a属于a,记作a∈a
(2)不属于:如果a不是集合a的元素,就说a不属于a,记作aa
4、集合中元素的特性
(1)确定性:按照明确的判断标准给定一个元素或者在这个集合里,或者不在,不能模棱两可
(2)互异性:集合中的元素没有重复
(3)无序性:集合中的元素没有一定的顺序(通常用正常的顺序写出)
5、⑴集合通常用大写的拉丁字母表示,如a、b、c、p、q……
元素通常用小写的拉丁字母表示,如a、b、c、p、q……
⑵“∈”的开口方向,不能把a∈a颠倒过来写。
数学10加几教案篇2
教学目标:使学生理解和掌握真分数,假分数的意义和特征,学会把假分数化成整数。
教学重点:真分数和假分数的特征。
教学难点:等于1的假分数。
教学课型:新授课
教具准备:课件
教学过程:
一,激发兴趣,引出概念
1,真分数和假分数的意义及特征
(1)观察比较下列每个分数中分子,分母的大小,并试着按一定的原则把这些分数分组。[课件1]
1335553/5
457510515/5
①板述:分子比分母小的分数叫做真分数。
分子比分母大或者分子和分母相等的分数,叫做假分数。
※请说出3个真分数,3个假分数。
②观察比较:a,说一说第二组中的两个分数的意义这样的分数等于多少
b,再请观察第一,三组的分数的分子与分母的大小关系,分数值
与1的关系,你发现有没有规律
板书:真分数小于1;假分数等于或大于1。
(2)在下面的线段图上,哪一段上的点表示的是真分数哪一段上的点表示的是假分数[课件2]
(3)揭示课题:
由图上可以清楚地看到,真分数,假分数实际上是以1为界,把分数分为了两类。所以这节课我们看上去研究的是分数的分子和分母的大小关系,而实质却是真分数和假分数。
板书课题:真分数和假分数的意义及特征
※①下面分数中哪些是真分数哪些是假分数[课件3]
13566613/6
②把上一题中的分数用直线上的点表示出来,看一看表示真分数的点和表示假分数的点,分别在直线的哪一段上。[课件4]
2,把假分数化成整数。
观察下列分数,它们有没有共同的特点[课件5]
35105
提问:a,这些假分数还可以用什么数来表示
b,我们可以用什么方法把它们化成整数这样计算的依据是什么
(分子除以分母,分数与除法的关系。)
(2)教学p99。例3:把3/3,8/4化成整数。
板书:3/3=3÷3=1提问:a,3÷3表示什么
8/4=8÷4=2b,8÷4表示什么
c,说一说怎样把假分数化为整数
(3)练习:把8/2,9/3,4/4,12/6化成整数。[课件6]
二,巩固练习,提高能力
1,说出四个分母是7的真分数。
2,说出3个分数值是1的假分数。
3,说出两个分母是9,分数值比1大又比2小的假分数。
4,把下面这些分数化为整数。[课件7]
245726100/25
5,判断正误,并说明理由。[课件8]
(1)分母比分子大的分数是真分数。(2)假分数的分子比分母大。6,分数a/b中,当a,b分别是什么数时,它为真分数什么数时,它为假分数
三,全课总结,抽象概括
提问:怎样将真分数,假分数,假分数化整数
四,家作
p101。1,2,3
板书设计:真分数和假分数的意义及特征
分子比分母小的分数叫做真分数。例:1/2,3/5,11/12真分数
分子比分母大或者分子和分母相等的分数,叫做假分数。例:5/3,8/8
假分数≥1。
数学10加几教案篇3
教学目标
1.通过教学使学生在旧知识的基础上,进一步认识用字母表示运算定律和计算公式.
2.理解用字母表示数的意义.
3.知道一个数的平方的含义及读写法,学会在含有字母的式子里简写和略写乘号.
4.使学生学会应用字母公式求值.
教学重点
用字母表示运算定律和公式;根据字母公式求值.
教学难点
理解一个数的平方的含义,乘号的简写和略写.
教学过程
一、铺垫孕伏
(一)在下面的□里填上适当的数,并说明根据什么.
18+34=34+□
(35+55)+45=357+(□+□)
35×□=59×□
(1.2×2.5)×4=1.2×(□×□)
(4+8)×□=□×3.5+□×□
二、探究新知
(一)教学用字母表示运算定律.
1.学生叙述各运算定律的内容,并用字母公式表示出来.
教师板书
(1)加法交换律:
(2)加法结合律:
(3)乘法交换律:
(4)乘法结合律:
(5)乘法分配律:
2.观察比较:用字母表示运算定律比用文字叙述有哪些优点?
优点:用字母表示运算定律比用文字叙述运算定律更简明易记,也便于应用.
(二)教学用字母表示计算公式.
1.教学用字母表示图形面积公式(出示图片:图形面积公式)
(1)表示正方形的面积,表示正方形的边长.
(2)表示平行四边的面积,、分别表示平行四边形的底和高.
(3)表示三角形的面积,、分别表示三角形的底和高.
(4)表示梯形的面积、、分别表示梯形的下底和高.
2.教学一个数的平方的含义及正方形周长的书写格式.
(1)读出下面各式,并说明表示的意义.
(2)把下面各式写成一个数的平方的形式.
5×5
(3)省略乘号,写出下面各式.
(4)根据运算定律在□填上适当的字母或数.
(□+□)+□
□·(□·□)
(5)如果用表示长方形的长,表示宽,那么
这个长方形的面积_____________________,
这个长方形的周长_____________________.
教师小节:在含有字母的式子里,乘号可以省略,但加号、减号、除号都不能省略,如:
不能写成;在两个数相乘的时候,乘号不能省略不写,可以改为“·”,但容易与小数点混淆,所以一般仍记作“×”.
3.教学例1.
例1.已知梯形的上底是3.5厘米,下底是5.5厘米,高是4厘米.求梯形的面积.
教师说明:在我们计算一个图形的面积或周长时,实际上是把数值代入有关的公式,算
出的结果就是它的面积或周长.
(1)说出梯形的面积公式.
(2)说出梯形面积公式中每一字母表示的意义.
(3)说出字母所代表的数值.
(4)学生尝试解答.
教师强调:在利用公式进行计算时,计算的结果不必写出单位名称,只在答题时注明就行了.
(5)练习:一个长方形的长是8.4厘米,宽是4.6厘米,它的周长是多少厘米?
三、课堂小结
今天这节课学习了什么知识?
四、课后作业
(一)已知一个三角形的底是3.8分米,高是1.5分米.求这个三角形的面积.
(二)先写出下面图形的周长和面积的计算公式,再把数值代入公式计算.
1.一个长方形,长7.2厘米,宽1.8厘米.
2.一个正方形,边长24毫米.
五、板书设计
用字母表示运算定律和计算公式
运算定律
计算公式
可以写成
读作:的平方
表示:两个相乘
例1.已知梯形的上底是3.5厘米,下底是5.5厘米,高是4厘米.求梯形的面积.
=(3.5+5.5)×4÷2
=9×4÷2
=18
答:梯形的面积是18平方厘米.
探究活动
找规律
活动目的
1.能正确用含有字母的式子表示数量.
2.培养学生的抽象思维能力和概括能力.
活动题目
仔细观察,发现规律,得出结论,然后填空.
35=3×10+5702=7×100+0×10+2
72=7×10+2123=1×100+2×10+3
16=1×10+6564=5×100+6×10+4
…………
1.一个两位数,十位上的数是a,个位上的数是b,这个两位数是().
2.一个三位数,百位上的数是a,十位上的数是b,个位上的数是c,这个三位数是().
数学教案-用字母表示运算定律和公式
活动过程
1.学生分小组讨论.
2.汇报思考过程和答案.
3.仿照题目类型,每个小组自编一组练习,相互交换解答.
参考答案
1.一个两位数,十位上的数是a,个位上的数是b,这个两位数是(10a+b).
2.一个三位数,百位上的数是a,十位上的数是b,个位上的数是c,这个三位数是(100a+10b+c).
数学10加几教案篇4
教学目的:
(1)使学生初步理解集合的概念,知道常用数集的概念及记法
(2)使学生初步了解“属于”关系的意义
(3)使学生初步了解有限集、无限集、空集的意义
教学重点:集合的基本概念及表示方法
教学难点:运用集合的两种常用表示方法——列举法与描述法,正确表示一些简单的集合
授课类型:新授课
课时安排:1课时
教 具:多媒体、实物投影仪
内容分析:
集合是中学数学的一个重要的基本概念 在小学数学中,就渗透了集合的初步概念,到了初中,更进一步应用集合的语言表述一些问题 例如,在代数中用到的有数集、解集等;在几何中用到的有点集 至于逻辑,可以说,从开始学习数学就离不开对逻辑知识的掌握和运用,基本的逻辑知识在日常生活、学习、工作中,也是认识问题、研究问题不可缺少的工具 这些可以帮助学生认识学习本章的意义,也是本章学习的基础把集合的初步知识与简易逻辑知识安排在高中数学的最开始,是因为在高中数学中,这些知识与其他内容有着密切联系,它们是学习、掌握和使用数学语言的基础 例如,下一章讲函数的概念与性质,就离不开集合与逻辑。
本节首先从初中代数与几何涉及的集合实例入手,引出集合与集合的元素的概念,并且结合实例对集合的概念作了说明 然后,介绍了集合的常用表示方法,包括列举法、描述法,还给出了画图表示集合的例子。
这节课主要学习全章的引言和集合的基本概念 学习引言是引发学生的学习兴趣,使学生认识学习本章的意义 本节课的教学重点是集合的基本概念集合是集合论中的原始的、不定义的概念 在开始接触集合的概念时,主要还是通过实例,对概念有一个初步认识 教科书给出的“一般地,某些指定的对象集在一起就成为一个集合,也简称集 ”这句话,只是对集合概念的描述性说明。
教学过程:
一、复习引入:
1、简介数集的发展,复习最大公约数和最小公倍数,质数与和数;
2、教材中的章头引言;
3、集合论的创始人——康托尔(德国数学家)(见附录);
4.“物以类聚”,“人以群分”;
5.教材中例子(p4)
二、讲解新课:
阅读教材第一部分,问题如下:
(1)有那些概念?是如何定义的?
(2)有那些符号?是如何表示的?
(3)集合中元素的特性是什么?
(一)集合的有关概念:
由一些数、一些点、一些图形、一些整式、一些物体、一些人组成的。我们说,每一组对象的全体形成一个集合,或者说,某些指定的对象集在一起就成为一个集合,也简称集。集合中的每个对象叫做这个集合的元素。
定义:一般地,某些指定的对象集在一起就成为一个集合.
1、集合的概念
(1)集合:某些指定的对象集在一起就形成一个集合(简称集)
(2)元素:集合中每个对象叫做这个集合的元素
2、常用数集及记法
(1)非负整数集(自然数集):全体非负整数的集合 记作n,
(2)正整数集:非负整数集内排除0的集 记作n*或n+
(3)整数集:全体整数的集合 记作z ,
(4)有理数集:全体有理数的集合 记作q ,
(5)实数集:全体实数的集合 记作r
注:(1)自然数集与非负整数集是相同的,也就是说,自然数集包括数0
(2)非负整数集内排除0的集 记作n*或n+ q、z、r等其它数集内排除0的集,也是这样表示,例如,整数集内排除0的集,表示成z*
3、元素对于集合的隶属关系
(1)属于:如果a是集合a的元素,就说a属于a,记作a∈a
(2)不属于:如果a不是集合a的元素,就说a不属于a,记作
4、集合中元素的特性
(1)确定性:按照明确的判断标准给定一个元素或者在这个集合里,或者不在,不能模棱两可
(2)互异性:集合中的元素没有重复
(3)无序性:集合中的元素没有一定的顺序(通常用正常的顺序写出)
5、⑴集合通常用大写的拉丁字母表示,如a、b、c、p、q……元素通常用小写的拉丁字母表示,如a、b、c、p、q……
⑵“∈”的开口方向,不能把a∈a颠倒过来写
三、练习题:
1、教材p5练习1、2
2、下列各组对象能确定一个集合吗?
(1)所有很大的实数 (不确定)
(2)好心的人 (不确定)
(3)1,2,2,3,4,5.(有重复)
3、设a,b是非零实数,那么 可能取的值组成集合的元素是_—2,0,2__
4、由实数x,-x,|x|, 所组成的集合,最多含( a )
(a)2个元素 (b)3个元素 (c)4个元素 (d)5个元素
5、设集合g中的元素是所有形如a+b (a∈z, b∈z)的数,求证:
(1) 当x∈n时, x∈g;
(2) 若x∈g,y∈g,则x+y∈g,而 不一定属于集合g
证明(1):在a+b (a∈z, b∈z)中,令a=x∈n,b=0,则x= x+0* = a+b ∈g,即x∈g
证明(2):∵x∈g,y∈g,
∴x= a+b (a∈z, b∈z),y= c+d (c∈z, d∈z)
∴x+y=( a+b )+( c+d )=(a+c)+(b+d)
∵a∈z, b∈z,c∈z, d∈z
∴(a+c) ∈z, (b+d) ∈z
∴x+y =(a+c)+(b+d) ∈g,
又∵ =且 不一定都是整数,
∴ = 不一定属于集合g
四、小结:本节课学习了以下内容:
1、集合的有关概念:(集合、元素、属于、不属于)
2、集合元素的性质:确定性,互异性,无序性
3、常用数集的定义及记法
数学10加几教案篇5
活动目标:
1、发现并比较不同叶子的差别,有重点地说出叶子的特征。
2、能按不同条件给叶子分类,了解几种特殊的叶子,感受叶子的多样性和奇特性。
3、培养细致的观察力和热爱大自然的情感。
4、愿意交流,清楚明白地表达自己的想法。
5、幼儿能积极的回答问题,增强幼儿的口头表达能力。
活动重难点:
了解几种特殊的叶子,感受叶子的多样性和奇特性
比较不同叶子的差别,有重点地说出叶子的特征。
活动准备:
1、幼儿事先采集的叶子。
2、不同的叶子实物和图片。
3、分类盒、纸、笔。
活动过程:
1、分享交流采集叶子的成果。
(幼儿的桌上陈列有采集来的各种叶子)师:大家来相互说一说,你采集到了什么叶子,它是什么样的?
2、比较不同叶子的差别,有重点地说出叶子的特征。
(1)师:这些叶子一样吗?有什么不同?
教师引导幼儿观察说出叶子的不同之处,并通过实物投影仪展示比较有关叶子。
教师小结:叶子有各种各样的,颜色、形状、大小、叶脉、边缘都不一样。
(2)师:叶子有共同的特征吗?
教师小结:每片叶子都有叶肉、叶脉和叶柄。
3、给叶子分类(1)教师:你会给叶子分类吗,看看谁和谁一家?为什么要这样分,给他们做个标记。
幼儿在分类盒中将叶子分类,并制作分类标记。
(2)请幼儿讲述分类情况。
4、了解几种特殊的叶子。
(1)了解可以吃的叶子。
师:叶子可以吃吗?你吃过什么样的叶子?
教师(出示一些蔬菜):你吃过这些菜的叶子吗?你还吃过哪些菜的叶子?
(2)了解有特殊本领的叶子。
教师(出示盆栽含羞草、猪笼草和毛毡苔、合欢的图片):你认识这是什么植物吗?他们的叶子可有着特殊的本领。
教师演示、介绍这四种植物叶子的特殊本领。
5、总结性谈话。
师:你看了那么多有趣的叶子,觉得大自然奇妙吗?大自然中是个神奇的大宝库,有许许多多的奥秘,等着我们去探索发现。
活动延伸:
孩子收集不同的树叶,使孩子积累有关叶子的经验。
教学反思
这次的活动,是孩子们发现叶子而引发的,通过今天的教学活动,可以看出,幼儿对此活动也很感兴趣,表现得非常活跃。也是从今天来看,孩子们的兴趣还远远不止是老师所想到的这些,而是更多、更加广泛。
数学10加几教案篇6
【教学目标】
知识与技能:了解并掌握数据收集的基本方法。
过程与方法:在调查的过程中,要有认真的态度,积极参与。
情感、态度与价值观:体会统计调查在解决实际问题中的作用,逐步养成用数据说话的良好习惯。
【教学重难点】
重点:掌握统计调查的基本方法。
难点:能根据实际情况合理地选择调查方法。
【教学过程】
讲授新课
像前面提到的收集数据的活动中,全班同学是我们要考察的对象,我们采用问卷对全体同学作了逐一调查,像这样对全体对象进行的调查叫做全面调查。
调查、试验如采用普查可以收集到较全面、准确的数据,但普查的工作量比较大,有时受客观条件(人力、财力等)的限制难以进行,有时由于调查具有破坏性,不允许采用。在这些情况下,常常采用抽样调查,即从被考察的全体对象中抽出一部分对象进行考察的调查方式。
在一个统计问题中,我们把所要考察对象的全体叫做总体,其中的每一个考察对象叫做个体,从总体中所抽取的一部分个体叫做总体的一个样本(sample),样本中个体的数目叫做样本容量。
例如,在通过试验考察500只新工艺生产的灯泡的使用寿命时,从中抽取50只进行试验。这500只灯泡的使用寿命的全体是总体,其中每只灯泡的使用寿命是个体,抽取的50只灯泡的使用寿命是一个样本,50是这个样本的样本容量。
为了使抽取的50只灯泡能很好地反映500只灯泡的情况,抽取时要使每只灯泡逐一进行编号,再把编号写在小纸片上,将小纸片揉成团,放在一个不透明的容器内,充分搅拌后,从中一个个地抽取50个号签。
上面抽取样本的过程中,总体中的各个个体都有相等的机会被抽到,像这样的抽样方法是一种简单随机抽样。
师:以“你知道父母的生日吗?”为题在班级进行调查,请设计一张问卷调查表。
学生小组合作、讨论,学生代表展示结果。
教师指导、评论。
师:除了问卷调查外,我们还有哪些方法收集到数据呢?
学生小组讨论、交流,学生代表回答。
师:收集数据的直接方法有访问、调查、观察、测量、试验等,间接方法有查阅资料、上网查询等。就以下统计的数据,你认为选择何种方法去收集比较合适?
(1)你班中的同学是如何安排周末时间的?
(2)我国濒临灭绝的植物数量;
(3)某种玉米种子的发芽率;
(4)学校门口十字路口每天7:00~7:10时的车流量。
数学10加几教案篇7
一、现场购物,体验成功。
谈话:我们已经了解有关购物知识,现在我们一起到小小商店去购买自己需要的东西。
教师可以选定一部分学生扮演的售货员,其余的扮演顾客。让学生根据自己的需要,利用人民币购买商品。在活动过程中,要让买卖双方互相检查对方在进行人民币计算时有没有发生错误。例如,顾客要检查售货员有没有找错零钱,售货员则要检查顾客所付出的钱数。活动中,如果发现自己解决不了的问题,可以和其他同学商量、讨论。教师一方面要注意观察学生提出了哪些问题,是怎样解决的;另一方面要在学生碰到困难时给予适当的帮助和提示。
二、汇报讨论,活动总结。
活动结束后,组织学生进行汇报,并对出现问题进行讨论。
(1)汇报一下活动中提出了哪些问题或遇到了哪些问题,都是怎样解决的。让大家讨论一下。这种解决问题方法是不是的?
(2)你原有多少钱?买了哪些物品?一共用了多少钱?现在还剩多少钱?判断一下算得对吗?
(3)请小售货员汇报结果:一共卖出多少东西?收入多少钱?
三、实践平台,拓展提高。
红红到超市买东西,他付给营业员50元的人民币,营业员找给他5元钱,请你说一说他可能买了下面哪几样东西?
汽车38元飞机5元沙滩玩具10元布娃娃30元手电筒2元纸扇3元
教学反思:
数学10加几教案篇8
活动目标:
1.通过操作将图形二等分,并知道分后的两份是相等的,而每一份都比原来的图形小,原来的图形都比分后的每一份大。
2.发展幼儿的动手操作能力和数学思维能力。
3.体验数学活动带来的乐趣。
活动重点:
学习二等分。
活动难点:
通过操作引导幼儿探索物体等分的多种方法。
活动准备:
1.狗熊、狐狸、饼的图片。
2.人手一份正方形、长方形、圆形、等边三角形的纸。
3.长方体、正方体的蛋糕。
活动过程:
一、故事导入
1.以《两只笨狗熊》故事引发幼儿讨论。
问题:为什么两只笨狗熊会上狐狸的的当?究竟“笨”在哪里?
2.归纳:两只笨狗熊就笨在不会把干面包分成一样大的两块,所以上了狡猾狐狸的当。
二、学习二等分
1.请幼儿拿出藏在小椅子下的圆形,练习用纸(平面:圆形)代替“饼”,尝试二等分。
2.教师提问:怎样把圆形饼干分成一样大的两份,幼儿回答。
3.请幼儿练习用纸(平面:正方形、长方形、等边三角形)代替“饼”,再一次操作,尝试二等分。(提醒幼儿比较,等分后两份是否一样大?再把分后的'每一份与原来的作比较。)
4.教师请幼儿说说将正方形、长方形和等边三角形二等分的分法并演示自己分的方法。(把纸对折,角对角、边对边,就是一样大的两份了。)
5.汇总各人分“饼”的情况,强调将“饼”分成一样大的两份就叫“二等分”。
三、学习将长方体、正方体的“饼”二等分。
1.教师示范将长方体的蛋糕二等分。
2.分发正方体的蛋糕,让幼儿尝试二等分。
会计实习心得体会最新模板相关文章: